Skip to main content

A MuPAD Library for Differential Equations

  • Conference paper
Computer Algebra in Scientific Computing CASC 2001

Abstract

We present an overview of the MuPAD library DETools for the analysis of differential equations. It has been developed within an object-oriented environment for the efficient representation of differential functions. Currently, the main ingredients of the library are a fairly general package for Lie symmetry analysis and a algebraic-geometric completion package for overdetermined systems.

This work has been supported by Deutsche Forschungsgemeinschaft, Landesgraduiertenförderung Baden-Württemberg and INTAS grant 99-1222.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.O. Ahmed and R.M. Corless. The method of modified equations in Maple. Technical report, Dept. of Applied Mathematics, University of Western Ontario, London (Canada), 1997.

    Google Scholar 

  2. G.W. Bluman and J.D. Cole. The general similarity solution of the heat equation. J. Math. Mech., 18:1025–1042, 1969.

    MathSciNet  MATH  Google Scholar 

  3. J. Calmet, M. Hausdorf, and W.M. Seiler. A constructive introduction to involution. In Proc. Int. Symp. Applications of Computer Algebra-ISACA’ 2000. World Scientific, Singapore, to appear.

    Google Scholar 

  4. B. Champagne, W. Hereman, and P. Winternitz. The computer calculation of Lie point symmetries of large systems of differential equations. Comp. Phys. Comm., 66: 319–340, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Drescher. Axioms, categories and domains. Automath Technical Report No.1, Universität Paderborn, 1996.

    Google Scholar 

  6. B. Fornberg. Generation of finite difference formulas on arbitrary space grids. Math. Comp., 51:699–701, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Fornberg. Calculation of weights in finite difference methods. SIAM Rev., 40:685–691, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  8. V.P. Gerdt and Yu.A. Blinkov. Involutive bases of polynomial ideals. Math. Comp. Simul., 45:519–542, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  9. D.H. Hartley and R.W. Tucker. A constructive implementation of the CartanKähler theory of exterior differential systems. J. Symb. Comp., 12:655–667, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Hausdorf. Geometrisch-algebraische Vervollständigung allgemeiner Systeme von Differentialgleichungen. Master’s Thesis, Universität Karlsruhe, 2000.

    Google Scholar 

  11. M. Hausdorf and W.M. Seiler. Differential equations in MuPAD I: An objectoriented environment. Internal Report 2000-17, Universität Karlsruhe, Fakultät für Informatik, 2000.

    Google Scholar 

  12. M. Hausdorf and W.M. Seiler. An efficient algebraic algorithm for the geometric completion to involution. Preprint Universität Mannheim, 2000.

    Google Scholar 

  13. M. Hausdorf and W.M. Seiler. Perturbation versus differentiation indices. This proceedings.

    Google Scholar 

  14. W. Hereman. Symbolic software for Lie symmetry analysis. In N.H. Ibragimov, editor, CRC Handbook of Lie Group Analysis of Differential Equations, Volume 3: New Trends in Theoretical Development and Computational Methods, chapter 13. CRC Press, Boca Raton, Florida, 1995.

    Google Scholar 

  15. P.J. Olver. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics 107. Springer-Verlag, New York, 1986.

    Book  MATH  Google Scholar 

  16. J.F. Pommaret. Systems of Partial Differential Equations and Lie Pseudogroups. Gordon & Breach, London, 1978.

    MATH  Google Scholar 

  17. J. F. Pommaret and A. Quadrat. Generalized Bezout Identity. Appl. Alg. Eng. Comm. Comp., 9:91–116, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Pucci and G. Saccomandi. On the weak symmetry groups of partial differential equations. J. Math. Anal. Appl., 163:588–598, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Schü, W.M. Seiler, and J. Calmet. Algorithmic methods for Lie pseudogroups. In N. Ibragimov, M. Torrisi, and A. Valenti, editors, Proc. Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics, pages 337–344. Kluwer, Dordrecht, 1993.

    Chapter  Google Scholar 

  20. W.M. Seiler. Analysis and Application of the Formal Theory of Partial Differential Equations. PhD thesis, School of Physics and Materials, Lancaster University, 1994.

    Google Scholar 

  21. W.M. Seiler. Involution and symmetry reductions. Math. Comp. Model., 25:63–73, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  22. W.M. Seiler. Indices and solvability for general systems of differential equations. In V.G. Ghanza, E.W. Mayr, and E.V. Vorozhtsov, editors, Computer Algebra in Scientific Computing-CASC ‘99, pages 365–385. Springer-Verlag, Berlin, 1999.

    Chapter  Google Scholar 

  23. W.M. Seiler. A combinatorial approach to involution and δ-regularity. Preprint Universität Mannheim, 2000.

    Google Scholar 

  24. W.M. Seiler. Completion to involution and semi-discretisations. Appl. Num. Math., to appear, 2001.

    Google Scholar 

  25. W.M. Seiler and R.W. Tucker. Involution and constrained dynamics I: The Dirac approach. J. Phys. A, 28:4431–4451, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Zerz. Topics in Multidimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences 256, Springer-Verlag, London, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belanger, J., Hausdorf, M., Seiler, W.M. (2001). A MuPAD Library for Differential Equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing CASC 2001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56666-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56666-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62684-5

  • Online ISBN: 978-3-642-56666-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics