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Preface

DOMAINE: [domen]
Ce domaine est encore ferrne aux savants

DECOMPOSER: [dek3poze]
Decomposer un probleme pour mieux le resoudre

•Micro Robert : Dictionnaire du francais primordial

The num erical approximation of partial differential equations, very often , is a
challenging task. Many such problems of practical interest can only be solved
by means of modern supercomputers. However , the efficiency of the simula­
tion depends strongly on the use of special numerical algorithms. Domain de­
composition methods provide powerful tools for the numerical approximation
of partial differential equations arising in the modeling of many interesting
applicat ions in science and engineering. Although the first domain decompo­
sition techniques were used successfully more than hundred years ago, these
methods are relatively new for the numerical approximation of partial differ­
ential equations. The possibilities of high performance computations and the
interest in large-scale problems have led to an increased research activity in
the field of domain decomposition.

However, the meaning of the term "domain decomposition" depends
strongly on the context. It can refer to optimal discretiz ation techniques
for the underlying problems, or to efficient iterative solvers for the arising
large systems of equations, or to parallelization techniques. In many modern
simulation codes, different aspects of domain decomposition techniques come
into play, and the overall efficiency depends on a smooth interaction between
these different components . The coupling of different discretization schemes ,
the coupling of different physical models, and many efficient preconditioners
for the algebraic systems can be analyzed within an abstract framework . At
first glance these aspects seem to be rather independent. However , all have
one central idea in common: The decomposition of the underlying global
problem into suitable subproblems of smaller complexity. In general, a com­
plete decoupling of the global problem into many independent subproblems,
which are easy to solve, is not possible. Since, the subproblems are very often
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coupled, there has to be communication between the different subproblems.
Although the term optimal depends on the context, the pr oper handling of
the inform at ion t ransfer across the interfaces between the sub problems is
of major import an ce for the design of opt imal methods. In the case of dis­
cretization techniques, a priori estimates for the discretizati on errors have to
be considered. They very much depend on the appro pr iate couplings across
the interfaces which are often realized by matching condit ions. The jump
across the int erfaces which measur es the nonconformity of the method has to
be bounded in a suitable way. In the case of iterative solvers , the convergence
rate and the computational effort for one iteration ste p measure the quality
of a method. To obtain scalable iteration schemes, very often, one has to
includ e a suitable global prob lem of small compl exity.

In this work, both discretiz ation techniques and iterative solvers are ad­
dressed . A brief overvi ew of different approaches is given and new techniques
and ideas are proposed . An abst ract framework for dom ain decomposition
methods is presented and an analysis is carried out for new techniques of spe­
cial interest . Optimal est imates for the methods considered ar e established
and numerical results confirm the theoreti cal predicti ons.

Chapter 1 concerns special discretization methods based on domain de­
composit ion t echniques. In particular , the decomp osition of geomet rical com­
plex structures into sub domains of simple shape is of special int erest . Another
example is the decomposition into subst ructures on which different physical
models are relevan t . Then , for each of these subp rob lems , an optimal ap­
proximation scheme involving the choice of the triangulation as well as the
discretization can be chosen. However to obtain optimal discretizations for
the global problem, the discrete subpro blems have been glued together ap­
propriately. Here, we focus on mortar finite element methods.

To start, we review the standard mor t ar setting for the coupling of La­
grangian conforming finite elements in Sect . 1.1. Both standard mortar for­
mul ations - the non conforming positive definite probl em and the saddle point
problem based on the unconstrained product space - are given.

In Sect . 1.2, we introduce and analyze alternative Lagrange mul tiplier
spaces. We derive ab stract condit ions on the Lagrange mul tiplier spaces such
that the non conforming discretization schemes obtained yield optimal a pri­
ori results. Lagrange multiplier spaces based on a du al basis ar e of special
int erest . In such a case, a biorthogonality relation between the nodal basis
functi ons of these spaces an d th e finit e element t race spaces holds . A main
advantage of these new Lagran ge multiplier spaces is that the locality of the
support of the nodal basis functions of the constrained space can be pr eserved.

Wi th this observation in mind, we introduce a new equivalent mortar
formulation defined on t he unconst rained pr odu ct space in Sect . 1.3. We
show that t he non-symmetric formulation can be analyzed as a Dirichlet ­
Neumann coupling. Based on the elimination of the Lagrange mul tiplier ,
we derive a symmetric positi ve definite formul at ion on the unconstrained
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product space, and the equivalence to th e positive definite problem on th e
constrained space is shown. Two formulations, a variational as well as an
algebraic one, are presented and discussed . A st andard nod al basis for th e
unconstrain ed product space can be used in the implement at ion . The stiffness
mat rix associated with our new variational form can be obtained from the
standard one on the unconstrained space by local operations.

Section 1.4 concerns two examples of non-standard mortar situations.
Each of them reflects an int erest ing feature of the abstract genera l frame­
work , and illustrates the flexibility of the method. We start with the cou­
pling of two different discreti zation schemes. The matching at the int erface is
based on the dual role of Dirichlet and Neum ann boundary condit ions. Two
different equivalent formulations are given for the coupling of mixed and
standard conforming finite elements . In our second example, we rewrite the
nonconforming Crouzeix- Raviart finite elements as mortar finit e elements.
We consider the extreme case that the decomposition of th e domain is given
by t he fine triangulation and t hat there fore the number of subdomains tends
to infinity as the discreti zation paramet er of the t riangulat ion tends to zero .

Finally in Sect . 1.5, we present several series of num erical results. In par­
t icular, we st udy t he influence of the choice of the Lagrange multiplier space
on the discreti zation erro rs . Examples with severa l crosspoints, a corne r sin­
gularity, discontinuous coefficients, a rotating geometry, and a linear elast ic­
ity probl em are considered. A second test series concerns th e influence of the
choice of the non-mortar side. Adaptive and uniform refinement techniques
are applied. In our last te st series, we consider the influence of jumps in th e
coefficient on an adapt ive refinement process at the int erface.

Chapter 2 concerns iterative solut ion techniques based on domain de­
composit ion . A brief overview of general Schwarz meth ods, including multi­
grid techniques, is given in Sect. 2.1. Examples for t he standard H I-case
illust rate overlapping , non-overlapping, and hierar chical decomposition tech­
niqu es. The following sect ions contain new results on non-st and ard situa t ions;
we discuss vector field discretizations as well as mor tar methods.

Section 2.2 focuses on an iterative subst ructur ing and a hierarchical basis
method for Raviart-Thomas finite elements in 3D. We start with the defini­
tion of th e local spaces and th e relevant bilinear forms and subspaces. The
central result of t his sectio n is established in Subsect. 2.2.2; it is a poly­
logarithmical bound independent of the jumps of the coefficients across the
subdomain boundaries of our iterat ive substructur ing method. The technical
tools are discussed in det ail with par ti cular emphas is on the role of t race the­
orems, harmonic extensions, and dual norms applied to finite element spaces .
As in the 2D case for standard Lagrangian finite elements , we introduce three
different types of subspaces called VII , Vp , and VT . We cannot avoid the use
of a global space to obtain quasi-optimal bounds. But in contrast to th e stan­
dard Lagrangi an finite elements in 3D, the low dimensional Raviar t - Thomas
space associated with the macro-triangulation formed by th e subregions can
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be used to obtain quasi-optimal results where the constant does not depend
on the jumps of the coefficients across the subdomain boundaries.

Sections 2.3-2.5 concern different iterative solvers for mortar finite ele­
ment formulations. In Sect. 2.3, we combine the idea of dual basis functions
for the Lagrange multiplier space with standard multigrid techniques for sym­
metric positive definite systems. The new mortar formulation, analyzed in
Sect. 1.3, is the point of departure for the introduction of our iterative solver.
We define and analyze our multigrid method in terms of level dependent bilin­
ear forms, modified transfer operators, and a special class of smoothers which
includes a standard Gaufl-Seidel smoother. Convergence rates independent
of the number of refinement steps are established for the W-cycle provided
that the number of smoothing steps is large enough. The numerical results
confirm the theory. Moreover asymptotically constant convergence rates are
obtained for the V-cycle with one pre- and one postsmoothing step.

Section 2.4 concerns a Dirichlet-Neumann type algorithm for the mortar
method. It turns out to be a block Gaufi-Seidel solver for the unsymmetric
mortar formulation on the product space. Numerical results illustrate the
influence of the choice of the damping parameter. The transfer of the bound­
ary values at the interface is realized in terms of a scaled mass matrix. This
matrix is sparse if and only if dual Lagrange multiplier spaces are used.

In Sect. 2.5, we study a multigrid method for the saddle point formulation .
Two different types of smoothers are discussed; a block diagonal and one
reflecting the saddle point structure. In the second case, the exact solution of
the modified Schur complement system is replaced by an iteration, resulting
in an inner and an outer iteration. This multigrid method is given for the
standard mortar formulation as presented in Sect. 1.1. In contrast to the two
previous sections, the use of dual Lagrange multiplier spaces does, in general,
not reduce the computational costs for one iteration step.
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