Skip to main content

Object Recognition with Multiple Observers

  • Conference paper
Autonome Mobile Systeme 2001

Part of the book series: Informatik aktuell ((INFORMAT))

  • 155 Accesses

Abstract

This paper introduces an approach to recognize objects in a group of observers. The fundamental idea of this approach is based on the usage of cooperation at object level in order to overcome limitations of typical recognition applications which often lead to ambiguous interpretations. By integrating individual hypotheses which were calculated at spatial distributed viewpoints, the robustness of the recognition results can be increased significantly. Experiments confirm the benefit of fusing object hypotheses from multiple observers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Buschmann, L. Falkenhagen, R. Koch, R. Mohr, and L.V. Gool. Cumuli, panorama, and vanguard project overview. In R. Koch and L.V. Gool, editors, LNCS 1506, pages 1–13. Springer, 1998.

    Google Scholar 

  2. R.T. Collins, A.J. Lipton, and T. Kanade. A system for video surveillance and monitoring. Proc. of the Amer. Nucl. Society: Eight Intern. Topical Meeting on Robotics and Remote Systems, Pittsburgh, 25.–29. April 1999.

    Google Scholar 

  3. R. Epstein, A. Yuille, and P. Belhumeur. Learning object representations from lighting variations. In J. Ponce, A. Zisserman, and M. Hebert, editors, Object Representation in Computer Vision II, pages 179–199. Springer, 199

    Google Scholar 

  4. P. Gros. Using quasi-invariants for automatic model building and object recognition. In M. Hebert, J. Ponce, T. Boult, and A. Gross, editors, Object Representation in Computer Vision, pages 65–75. Springer, 1994.

    Google Scholar 

  5. E. Grosso, G. Sandini, and M. Tistarelli. 3d object reconstruction using stereo and motion. IEEE Trans. on Systems, Man and Cybernetics, 19(6): 1465–1488, 1989.

    Article  Google Scholar 

  6. D. Hall. Mathematical Techniques in Multi-sensor Fusion. Artech House Inc., 1992

    Google Scholar 

  7. S.S. Iyengar, L. Prasad, and Hla Min. Advances in Distributed Sensor Integration. Prentice Hall, 1995.

    Google Scholar 

  8. R. Jain and K. Wakimoto. Multiple perspective interactive video. In Int. Conf. on Multi-media Computing and Systems, pages 202–211, 1995.

    Google Scholar 

  9. E.P. Krotkov. Active Computer Vision by Cooperative Focus and Stereo. Springer, 1989.

    Google Scholar 

  10. A. Leonardis and H. Bischof. Dealing with occlusions in the eigenspace approach. In CVPR, pages 453–458, 199

    Google Scholar 

  11. T. Matsuyama. Cooperative distributed vision: Dynamic integration of visual perception, action, and communication. KI 99, pages 75–88, 1999.

    Google Scholar 

  12. H. Murase and S. Nayar. Visual learning and recognition of 3d objects from appearance. International Journal of Computer Vision, 14: 5–24, 19

    Google Scholar 

  13. N. Oswald. Kooperative Bildverarbeitung für autonome Systeme. VDI-Verlag, 2001 (to appear

    Google Scholar 

  14. N. Oswald and P. Levi. Cooperative vision in a multi-agent architecture. Lecture Notes in Computer Science, 1310: 709–716, 1997.

    Article  Google Scholar 

  15. J. Pearl. Distributed revision of composite beliefs. Artificial Intelligence, 33: 173–215, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Pradhan, M. Henrion, G. Provan, B.D. Favero, and K. Huang. The sensitivity of belief networks to imprecise probabilities. AI, 85: 363–397, 1996.

    Google Scholar 

  17. W.H. Press. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1992.

    Google Scholar 

  18. P. Pritchett and A. Zisserman. Matching and reconstruction from widely separated views. In R. Koch and L.V. Gool, editors, LNCS 1506, pages 78–92. Springer, 1998.

    Google Scholar 

  19. H. Saito, S. Baba, M. Kimura, S. Vedula, and T. Kanade. Apperance-based virtual view generation of temporally-varying events from multi-camera images in the 3d room. Proc. of Sec. Int. Conf. on 3-D Digital Imaging and Modeling, Oct. 1999.

    Google Scholar 

  20. B. Schiele and J.L. Crowley. Object recognition using multidimensional receptive field histograms. In ECCV, pages 610–619. Springer, 1996.

    Google Scholar 

  21. P. Walley. Measures of uncertainty in expert systems. AI, 83: 1–58, 1996.

    MathSciNet  Google Scholar 

  22. E. Waltz and J. Llinas. Multisensor Data Fusion. Artech House, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oswald, N., Levi, P. (2001). Object Recognition with Multiple Observers. In: Levi, P., Schanz, M. (eds) Autonome Mobile Systeme 2001. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56787-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56787-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42552-6

  • Online ISBN: 978-3-642-56787-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics