Skip to main content

An Implementation for Regression Quantile Estimation

  • Conference paper
Compstat
  • 1168 Accesses

Abstract

Of the many methods that have been developed for quantile regression (Wright and Royston, 1997) the LMS method (Cole and Green, 1992) can be easily understood, is flexible and based on splines. The basic idea is that, for a fixed value of the covariate, a Box-Cox transformation of the response is applied to obtain standard normality. The three parameters are chosen to maximize a penalized log-likelihood. One unpublished extension by Lopatatzidis and Green is to transform to a gamma distribution, which helps overcome a range-restriction problem in the original formulation. This paper proposes a new method based on the Yeo and Johnson (2000) transformation. It has the advantage that it allows for both positive and negative values in the response. R/S-PLUS software written by the author implementing the LMS method and variants are described and illustrated with data from a New Zealand workforce study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Buchinsky, M. (1998). Recent advances in quantile regression models: a practical guide for empirical research, The Journal of Human Resources,33, 88–126.

    Article  Google Scholar 

  • Chambers, J.M. (1998). Programming with Data: A Guide to the S Language. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • (eds.) Chambers, J.M. and Hastie, T.J. (1993). Statistical Models in S. Pacific Grove, CA.: Wadsworth and Brooks/Cole.

    Google Scholar 

  • Chitty, L.S., Altman, D.G., Henderson, A. and Campbell, S. (1994). Charts of fetal size: 2, head measurements, Br. J. Obstetr., 101, 35–43.

    Article  Google Scholar 

  • Cole, T.J. (1988). Fitting smoothed centile curves to reference data. J. R. Statist. Soc. A, 151, 385–406.

    Article  Google Scholar 

  • Cole, T.J. and Green, P.J. (1992). Smoothing reference centile curves: the LMS method and penalized likelihood. Statist. Med., 11, 1305–1319.

    Article  Google Scholar 

  • Green, P.J. and Silverman, B.W. (1994). Nonparametric Regression and Gen-eralized Linear Models. London: Chapman & Hall.

    Google Scholar 

  • Harris, E.K. and Boyd, J.C. (1995). Statistical Bases of Reference Values in Laboratory Medicine. New York: Dekker.

    Google Scholar 

  • Hyndman, R.J., Bashtannyk, D.M. and Grunwald, G.K. (1996). Estimating and visualizing conditional densities. J. Comp. Graph. Statist., 5, 315–336.

    MathSciNet  Google Scholar 

  • Koenker, R. and Hallock, K. F. (2001). Quantile regression: an introduction. Journal of Economic Perspectives, 15(4), 143–156.

    Article  Google Scholar 

  • Lopatatzidis, A. and Green, P.J. (unpublished manuscript). Semiparametric quantile regression using the gamma distribution.

    Google Scholar 

  • Rosen, O. and Cohen, A. (1996). Extreme percentile regression. In: Härdle, W. and Schimek, M.G. (eds.), Statistical Theory and Computational Aspects of Smoothing: Proceedings of the COMPSTAT ‘84 Satellite Meeting held in Semmering, Austria, 27–28 August 1994, pp. 200–214, Heidelberg: Physica-Verlag.

    Google Scholar 

  • Smith, R.L. (1986). Extreme value theory based on the r largest annual events. J. Hydrology, 86, 27–43.

    Article  Google Scholar 

  • Wright, E.M. and Royston, P. (1997). A comparison of statistical methods for age-related reference intervals. J. R. Statist. Soc. A, 160, 47–69.

    Article  Google Scholar 

  • Yee, T.W. (1998). On an alternative solution to the vector spline problem, J. Roy. Statist. Soc. B, 60, 183–188.

    Article  MATH  Google Scholar 

  • Yee, T.W. and Wild, C.J. (1996). Vector generalized additive models. J. Roy. Statist. Soc. B, 58, 381–493.

    Google Scholar 

  • Yeo, I.-K. and Johnson, R.A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika,87, 954–959.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yee, T.W. (2002). An Implementation for Regression Quantile Estimation. In: Härdle, W., Rönz, B. (eds) Compstat. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57489-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57489-4_1

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1517-7

  • Online ISBN: 978-3-642-57489-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics