Skip to main content

Combining Graphical Models and PCA for Statistical Process Control

  • Conference paper
Compstat

Abstract

Principal component analysis (PCA) is frequently used for detection of common structures in multivariate data, e.g. in statistical process control. Critical issues are the choice of the number of principal components and their interpretation. These tasks become even more difficult when dynamic PCA (Brillinger, 1981) CitationRef CitationID Omitted tag 1 bachieve is applied to incorporate dependencies within time series data. We use the information obtained from graphical models to improve pattern detection based on PCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beale, E.M.L., Kendall, M.G. and Mann, D.W. (1967). The discarding of variables in multivariate analysis. Biometrika, 54 357–366.

    MathSciNet  Google Scholar 

  • Brillinger, D.R. (1981). Time Series. Data Analysis and Theory. San Francisco: Holden Day.

    MATH  Google Scholar 

  • Brillinger, D.R. (1996). Remarks concerning graphical models for time series and point processes. Revista de Econometria, 16 1–23.

    MathSciNet  Google Scholar 

  • Casin, Ph. (2001). A generalization of principal component analysis to K sets of variables. Computational Statistics & Data Analysis, 35 417–428.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D.R. and Wermuth, N. (1996). Multivariate Dependencies. London: Chapman & Hall.

    MATH  Google Scholar 

  • Dahlhaus, R. (2000). Graphical Interaction Models for ultivariate Time Series. Metrika, 51 157–172.

    Article  MathSciNet  MATH  Google Scholar 

  • Dahlhaus, R. and Eichler, M. (2000). Spectrum. Program is available at http://www.statlab.uni-heidelberg.de/projects/graphical.models/projects/graphical.models

    Google Scholar 

  • Gather, U., Imhoff, M. and Fried, R. (2002). Graphical models for multivariate time series from intensive care monitoring. Statistics in Medicine, to appear.

    Google Scholar 

  • Keller, M. (2000). Hauptkomponentenanalyse für intensivmedizinische Zeitreihen (in German). Unpublished Diploma Thesis, Department of Statistics, University of Dortmund, Germany.

    Google Scholar 

  • MacGregor, J.F., Jaeckle, C., Kiparissides, C. and Koutoudi, M. (1994). Process Monitoring and Diagnosis by Multiblock PLS Methods. AIChE J., 40 826–838.

    Google Scholar 

  • McCabe, G.P. (1984). Principal variables. Technometrics, 26 137–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Read, P.L. (1993). Phase portrait reconstruction using ultivariate singular systems analysis. Physica D,69 353–365.

    Article  MATH  Google Scholar 

  • Tsay, R.S., Peña, D., Pankratz, A.E. (2000). Outliers in multivariate time series. Biometrika, 87 789–804.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fried, R., Gather, U., Imhoff, M., Keller, M., Lanius, V. (2002). Combining Graphical Models and PCA for Statistical Process Control. In: Härdle, W., Rönz, B. (eds) Compstat. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57489-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57489-4_32

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1517-7

  • Online ISBN: 978-3-642-57489-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics