Skip to main content

The Forward Search

  • Conference paper
Compstat
  • 1140 Accesses

Abstract

This paper summarises joint research with Marco Riani on the forward search, a powerful general method for detecting multiple masked outliers and for determining their effect on models fitted to the data. Atkinson and Riani (2000) describe its use in linear and nonlinear regression, response transformation and in generalized linear models. These examples are here extended to include multivariate analysis. Riani and Atkinson (2001) describe an application to multivariate transformations and discriminant analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Atkinson, A. C. and M. Riani (2000). Robust Diagnostic Regression Analysis. New York: Springer—Verlag.

    Book  MATH  Google Scholar 

  • Atkinson, A. C. and M. Riani (2002). Tests in the fan plot for robust, diagnostic transformations in regression. Chemometrics and Intelligent Laboratory Systems 60, 87–100.

    Article  Google Scholar 

  • Atkinson, A. C. and M. Riani (2003). Forward search added variable t tests and the effect of masked outliers on model selection and transformation. (Submitted).

    Google Scholar 

  • Box, G. E. P. and D. R. Cox (1964). An analysis of transformations (with discussion). Journal of the Royal Statistical Society, Series B 26, 211–246.

    MathSciNet  MATH  Google Scholar 

  • Flury, B. and H. Riedwyl (1988). Multivariate Statistics: A Practical Approach. London: Chapman and Hall.

    Book  Google Scholar 

  • Nelson, W. (1981). The analysis of performance-degradation data. IEEE Transactions on Reliability R-30, 149–155.

    Article  Google Scholar 

  • Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman (1996). Applied Linear Statistical Models, 4th edition. New York: McGraw-Hill.

    Google Scholar 

  • Riani, M. and A. C. Atkinson (2001). A unified approach to outliers, influence, and transformations in discriminant analysis. Journal of Computational and Graphical Statistics 10, 513–544.

    Article  MathSciNet  Google Scholar 

  • Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association 79, 871–880.

    Article  MathSciNet  MATH  Google Scholar 

  • Zani, S., M. Riani, and A. Corbellini (1998). Robust bivariate boxplots and multiple outlier detection. Computational Statistics and Data Analysis 28, 257–270.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atkinson, A. (2002). The Forward Search. In: Härdle, W., Rönz, B. (eds) Compstat. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57489-4_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57489-4_91

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1517-7

  • Online ISBN: 978-3-642-57489-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics