Skip to main content

Some Failures and Successes of Long-Timestep Approaches to Biomolecular Simulations

  • Conference paper
Computational Molecular Dynamics: Challenges, Methods, Ideas

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 4))

Abstract

A personal account of work on long-timestep integration of biomolecular dynamics is presented, emphasizing the limitations, as well as success, of various approaches. These approaches include implicit discretization, separation into harmonic and anharmonic motion, and force splitting; some of these techniques are combined with stochastic dynamics. A Langevin/force-splitting approach for biomolecular simulations termed LN (for its origin in a Langevin/normal-modes scheme) is also described, suitable for general thermodynamic and sampling questions. LN combines force linearization, stochastic dynamics, and force splitting via extrapolation so that the timestep for updating the slow forces can be increased beyond half the period of the fast motions (i.e., 5 fs). This combination of strategies alleviates the severe stability restriction due to resonance artifacts that apply to symplectic force-splitting methods and can yield significant speedup (with respect to small-timestep reference Langevin trajectories). Extensions to sampling problems are natural by this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. S. Chan and K. A. Dill. The protein folding problem. Physics Today, 46: 24–32, 1993.

    Article  Google Scholar 

  2. J. A. McCammon, B. M. Pettitt, and L. R. Scott. Ordinary differential equations of molecular dynamics. Computers Math. Applic., 28: 319–326, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. J. Leimkuhler, S. Reich, and R. D. Skeel. Integration methods for molecular dynamics. In J. P. Mesirov, K. Schulten, and D. W. Sumners, editors, Mathematical Approaches to Biomolecular Structure and Dynamics, volume 82 of IMA Volumes in Mathematics and Its Applications, pages 161–186, New York, New York, 1996. Springer-Verlag.

    Google Scholar 

  4. R. Elber. Novel methods for molecular dynamics simulations. Curr. Opin. Struc. Biol., 6: 232–235, 1996.

    Article  Google Scholar 

  5. T. Schlick, E. Barth, and M. Mandziuk. Biomolecular dynamics at long timesteps: Bridging the timescale gap between simulation and experimentation. Ann. Rev. Biophys. Biomol Struc., 26: 179–220, 1997.

    Article  Google Scholar 

  6. J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems. Chapman & Hall, London, 1994.

    MATH  Google Scholar 

  7. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comp. Phys., 23: 327–341, 1977.

    Article  Google Scholar 

  8. H.C. Andersen. Rattle: a ‘velocity’ version of the SHAKE algorithm for molecular dynamics calculations. J. Comp. Phys., 52: 24–34, 1983.

    Article  MATH  Google Scholar 

  9. B. Leimkuhler and R. D. Skeel. Symplectic numerical integrators in constrained Hamiltonian systems. J. Comp. Phys., 112: 117–125, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Barth, K. Kuczera, B. Leimkuhler, and R. D. Skeel. Algorithms for constrained molecular dynamics. J. Comp. Chem., 16: 1192–1209, 1995.

    Article  Google Scholar 

  11. W. B. Streett, D. J. Tildesley, and G. Saville. Multiple time step methods in molecular dynamics. Mol Phys., 35: 639–648, 1978.

    Article  Google Scholar 

  12. M. E. Tuckerman, B.J. Berne, and G. J. Martyna. Molecular dynamics algorithm for multiple time scales: Systems with long range forces. J. Chem. Phys., 94: 6811–6815, 1991.

    Article  Google Scholar 

  13. M. E. Tuckerman and B. J. Berne. Molecular dynamics in systems with multiple time scales: Systems with stiff and soft degrees of freedom and with short and long range forces. J. Comp. Chem., 95: 8362–8364, 1992.

    Google Scholar 

  14. H. Grubmüller, H. Heller, A. Windemuth, and K. Schulten. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Sim., 6: 121–142, 1991.

    Article  Google Scholar 

  15. M. Watanabe and M. Karplus. Dynamics of molecules with internal degrees of freedom by multiple time-step methods. J. Chem. Phys., 99: 8063–8074, 1993.

    Article  Google Scholar 

  16. D. E. Humphreys, R. A. Friesner, and B. J. Berne. A multiple-time-step molecular dynamics algorithm for macromolecules. J. Phys. Chem., 98(27): 6885–6892, 1994.

    Article  Google Scholar 

  17. R. Zhou and B. J. Berne. A new molecular dynamics method combining the reference system propagator algorithm with a fast multipole method for simulating proteins and other complex systems. J. Chem. Phys., 103: 9444–9459, 1995.

    Article  Google Scholar 

  18. L. Verlet. Computer ‘experiments’ on classical fluids: I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159(1): 98–103, July 1967.

    Article  Google Scholar 

  19. M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, New York, New York, 1990.

    Google Scholar 

  20. P. Deuflhard, M. Dellnitz, O. Junge, and Ch. Schütte. Computation of essential molecular dynamics by subdivision techniques: I. Basic concepts. Technical Report SC 96-45, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraβe 7, D-14195, Berlin-Dahlem, December 1996.

    Google Scholar 

  21. D. A. McQuarrie. Statistical Mechanics. Harper & Row, New York, New York, 1976. Chapters 20-21.

    Google Scholar 

  22. R. W. Pastor. Techniques and applications of Langevin dynamics simulations. In G. R. Luckhurst and C. A. Veracini, editors, The Molecular Dynamics of Liquid Crystals, pages 85–138. Kluwer Academic, Dordrecht, The Netherlands, 1994.

    Chapter  Google Scholar 

  23. A. Brünger, C. L. Brooks, III, and M. Karplus. Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem. Phys. Lett., 105: 495–500, 1982.

    Article  Google Scholar 

  24. T. Simonson. Accurate calculation of the dielectric constant of water from simulations of a microscopic droplet in vacuum. Chem. Phys. Lett., 250: 450–454, 1996.

    Article  Google Scholar 

  25. D. Beglov and B. Roux. Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J. Chem. Phys., 100: 9050–9063, 1994.

    Article  Google Scholar 

  26. D. Beglov and B. Roux. Dominant solvations effects from the primary shell of hydration: Approximation for molecular dynamics simulations. Biopolymers, 35: 171–178, 1994.

    Article  Google Scholar 

  27. D. Beglov and B. Roux. Numerical solutions of the hypernetted chain equation for a solute of arbitrary geometry in three dimensions. J. Chem. Phys., 103: 360–364, 1995.

    Article  Google Scholar 

  28. R. J. Loncharich, B. R. Brooks, and R. W. Pastor. Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide. Biopolymers, 32: 523–535, 1992.

    Article  Google Scholar 

  29. P. Derreumaux and T. Schlick. Long-time integration for peptides by the dynamics driver approach. Proteins: Struc. Func. Gen., 21: 282–302, 1995.

    Article  Google Scholar 

  30. M. H. Hao, M. R. Pincus, S. Rackovsky, and H. A. Scheraga. Unfolding and refolding of the native structure of bovine pancreatic trypsin inhibitor studied by computer simulations. Biochemistry, 32: 9614–9631, 1993.

    Article  Google Scholar 

  31. G. Ramachandran and T. Schlick. Solvent effects on supercoiled DNA dynamics explored by Langevin dynamics simulations. Phys. Rev. E, 51: 6188–6203, 1995.

    Article  Google Scholar 

  32. D. K. Klimov and D. Thirumalai. Viscosity dependence of the folding rates of proteins. Phys. Rev. Lett., 79: 317–320, 1997.

    Article  Google Scholar 

  33. R. C. Wade, M. E. Davis, B. A. Luty, J. D. Madura, and J. A. McCammon. Gating of the active site of triose phosphate isomerase: Brownian dynamics simulations of flexible peptide loops in the enzyme. Biophys. J., 64: 9–15, 1993.

    Article  Google Scholar 

  34. Hongmei Jian. A Combined Wormlike-Chain and Bead Model for Dynamic Simulations of Long DNA. PhD thesis, New York University, Department of Physics, New York, New York, October 1997.

    Google Scholar 

  35. D. A. Case. Normal mode analysis of protein dynamics. Curr. Opin. Struc. Biol., 4: 385–290, 1994.

    Article  Google Scholar 

  36. G. Ramachandran and T. Schlick. Beyond optimization: Simulating the dynamics of supercoiled DNA by a macroscopic model. In P. M. Pardalos, D. Shalloway, and G. Xue, editors, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, volume 23 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 215–231, Providence, Rhode Island, 1996. American Mathematical Society.

    Google Scholar 

  37. R. W. Pastor, B. R. Brooks, and A. Szabo. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys., 65: 1409–1419, 1988.

    Article  Google Scholar 

  38. C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall, Englewood Cliffs, New Jersey, 1971.

    MATH  Google Scholar 

  39. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, volume 14 of Springer Series in Computational Mathematics. Springer-Verlag, New York, New York, second edition, 1996.

    Google Scholar 

  40. D. Janezic and B. Orel. Implicit Runge-Kutta method for molecular dynamics integration. J. Chem. Info. Comp. Sci., 33: 252–257, 1993.

    Article  Google Scholar 

  41. G. Zhang and T. Schlick. Implicit discretization schemes for Langevin dynamics. Mol. Phys., 84: 1077–1098, 1995.

    Article  Google Scholar 

  42. C. S. Peskin and T. Schlick. Molecular dynamics by the backward Euler’s method. Comm. Pure App. Math., 42: 1001–1031, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Schlick. Pursuing Laplace’s vision on modern computers. In J. P. Mesirov, K. Schulten, and D. W. Sumners, editors, Mathematical Applications to Biomolecular Structure and Dynamics, volume 82 of IMA Volumes in Mathematics and Its Applications, pages 219–247, New York, New York, 1996. Springer-Verlag.

    Google Scholar 

  44. T. Schlick and M. L. Overton. A powerful truncated Newton method for potential energy functions. J. Comp. Chem., 8: 1025–1039, 1987.

    Article  MathSciNet  Google Scholar 

  45. T. Schlick and A. Fogelson. TNPACK — A truncated Newton minimization package for large-scale problems: I. Algorithm and usage. ACM Trans. Math. Softw., 14: 46–70, 1992.

    Article  Google Scholar 

  46. P. Derreumaux, G. Zhang, B. Brooks, and T. Schlick. A truncated-Newton method adapted for CHARMM and biomolecular applications. J. Comp. Chem., 15: 532–552, 1994.

    Article  Google Scholar 

  47. D. Xie and T. Schlick. Efficient implementation of the truncated Newton method for large-scale chemistry applications. SIAM J. Opt., 1997. In Press.

    Google Scholar 

  48. T. Schlick, S. Figueroa, and M. Mezei. A molecular dynamics simulation of a water droplet by the implicit-Euler/Langevin scheme. J. Chem. Phys., 94: 2118–2129, 1991.

    Article  Google Scholar 

  49. A. Nyberg and T. Schlick. Increasing the time step in molecular dynamics. Chem. Phys. Lett., 198: 538–546, 1992.

    Article  Google Scholar 

  50. T. Schlick and C. S. Peskin. Comment on: The evaluation of LI and LIN for dynamics simulations. J. Chem. Phys., 103: 9888–9889, 1995.

    Article  Google Scholar 

  51. T. Schlick and W. K. Olson. Supercoiled DNA energetics and dynamics by computer simulation. J. Mol Biol, 223: 1089–1119, 1992.

    Article  Google Scholar 

  52. T. Schlick and W. K. Olson. Trefoil knotting revealed by molecular dynamics simulations of supercoiled DNA. Science, 257: 1110–1115, 1992.

    Article  Google Scholar 

  53. T. Schlick, B. Li, and W. K. Olson. The influence of salt on DNA energetics and dynamics. Biophys. J., 67: 2146–2166, 1994.

    Article  Google Scholar 

  54. G. Liu, W. K. Olson, and T. Schlick. Application of Fourier methods to computer simulation of supercoiled DNA. Comp. Polymer Sci., 5: 7–27, 1995.

    Google Scholar 

  55. G. Liu, T. Schlick, A. J. Olson, and W. K. Olson. Configurational transitions in Fourier-series-represented DNA supercoils. Biophys. J., 73: 1742–1762, 1997.

    Article  Google Scholar 

  56. T. Schlick. Modeling superhelical DNA: Recent analytical and dynamic approaches. Curr. Opin. Struc. Biol., 5: 245–262, 1995.

    Article  Google Scholar 

  57. P. Derreumaux and T. Schlick. The loop opening/closing motion of the enzyme triosephosphate isomerase. Biophys. J., 74: 72–81, 1998.

    Article  Google Scholar 

  58. F. Kang. The Hamiltonian way for computing Hamiltonian dynamics. In R. Spigler, editor, Applied and Industrial Mathematics, pages 17–35. Kluwer Academic, Dordrecht, The Netherlands, 1990.

    Google Scholar 

  59. J. C. Simo, N. Tarnow, and K. K. Wang. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering, 100: 63–116, 1994.

    Article  Google Scholar 

  60. J. C. Simo and N. Tarnow. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. ZAMP, 43: 757–793, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  61. O. Gonzales and J. C. Simo. On the stability of symplectic and energymomentum conserving algorithms for nonlinear Hamiltonian systems with symmetry. Comp. Meth. App. Mech. Engin., 134: 197, 1994.

    Article  Google Scholar 

  62. M. Mandziuk and T. Schlick. Resonance in the dynamics of chemical systems simulated by the implicit-midpoint scheme. Chem. Phys. Lett., 237: 525–535, 1995.

    Article  Google Scholar 

  63. J. J. Biesiadecki and R. D. Skeel. Dangers of multiple-time-step methods. J. Comp. Phys., 109: 318–328, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  64. D. I. Okunbor and R. D. Skeel. Canonical numerical methods for molecular dynamics simulations. J. Comp. Chem., 15: 72–79, 1994.

    Article  Google Scholar 

  65. V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, Heidelberg, Berlin, 1989. second edition.

    Google Scholar 

  66. R. D. Skeel, G. Zhang, and T. Schlick. A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications. SIAM J. Sci. Comp., 18(1): 202–222, January 1997.

    Article  MathSciNet  Google Scholar 

  67. T. Schlick, M. Mandziuk, R.D. Skeel, and K. Srinivas. Nonlinear resonance artifacts in molecular dynamics simulations. J. Comp. Phys., 139: 1–29, 1998.

    Article  MathSciNet  Google Scholar 

  68. D. Janezic and B. Orel. Parallelization of an implicit Runge-Kutta method for molecular dynamics integration. J. Chem. Info. Comp. Sci., 34: 641–646, 1994.

    Article  Google Scholar 

  69. M. Zhang and R. D. Skeel. Cheap implicit symplectic integrators. Applied Numerical Mathematics, 25: 297–302, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. E. Tuckerman, G. J. Martyna, and B. J. Berne. Molecular dynamics algorithm for condensed systems with multiple time scales. J. Chem. Phys., 93: 1287–1291, 1990.

    Article  Google Scholar 

  71. G. Zhang and T. Schlick. LIN: A new algorithm combining implicit integration and normal mode techniques for molecular dynamics. J. Comp. Chem., 14: 1212–1233, 1993.

    Article  Google Scholar 

  72. G. Zhang and T. Schlick. The Langevin/implicit-Euler/Normal-Mode scheme (LIN) for molecular dynamics at large time steps. J. Chem. Phys., 101: 4995–5012, 1994.

    Article  Google Scholar 

  73. E. Barth, M. Mandziuk, and T. Schlick. A separating framework for increasing the timestep in molecular dynamics. In W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson, editors, Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, volume III, chapter 4, pages 97–121. ESCOM, Leiden, The Netherlands, 1997.

    Google Scholar 

  74. R. M. Levy, A. R. Srinivasan, W. K. Olson, and J. A. McCammon. Quasiharmonic method for studying very low frequency modes in proteins. Biopolymers, 23: 1099–1112, 1984.

    Article  Google Scholar 

  75. B. R. Brooks, D. Janežič, and M. Karplus. Harmonic analysis of large systems. I. Methodology. J. Comp. Chem., 16: 1522–1542, 1995.

    Article  Google Scholar 

  76. R. M. Levy, O. de la Luz Rojas, and R. A. Friesner. Quasi-harmonic method for calculating vibrational spectra from classical simulations on multidimensional anharmonic potential surfaces. J. Phys. Chem., 88: 4233–4238, 1984.

    Article  Google Scholar 

  77. B. R. Brooks and M. Karplus. Normal modes for specific motions of macromolecules: Application to the hinge-bending mode of lysozyme. Proc. Natl. Acad. Sci. USA, 82: 4995–4999, 1985.

    Article  Google Scholar 

  78. M. Hao and S. C. Harvey. Analyzing the normal mode dynamics of macromolecules by the component synthesis method. Biopolymers, 32: 1393–1405, 1992.

    Article  Google Scholar 

  79. P. Dauber-Osguthorpe and D. J. Osguthorpe. Partitioning the motion in molecular dynamics simulations into characteristic modes of motion. J. Comp. Chem., 14: 1259–1271, 1993.

    Article  Google Scholar 

  80. D. Perahia and L. Mouawad. Computation of low-frequency normal modes in macromolecules: Improvements to the method of diagonalization in a mixed basis and application to hemoglobin. Comput. Chem., 19: 241–246, 1995.

    Article  Google Scholar 

  81. A. Amadei, A. B. M. Linssen, and H. J. C. Berendsen. Essential dynamics of proteins. Proteins: Struc. Func. Gen., 17: 412–425, 1993.

    Article  Google Scholar 

  82. A. Amadei, A. B. M. Linssen, B. L. deGroot, D. M. F. van Aalten, and H. J. C. Berendsen. An efficient method for sampling the essential subspace of proteins. J. Biomol. Struct Dynam., 13: 615–625, 1996.

    Article  Google Scholar 

  83. M. A. Balsera, W. Wriggers, Y. Oono, and K. Schulten. Principal component analysis and long time protein dynamics. J. Phys. Chem., 100: 2567–2572, 1996.

    Article  Google Scholar 

  84. D. Janezic and F. Merzel. An efficient symplectic integration algorithm for molecular dynamics simulations. J. Chem. Info. Comp. Sci., 35: 321–326, 1995.

    Article  Google Scholar 

  85. J. D. Turner, P. K. Weiner, H. M. Chun, V. Lupi, S. Gallion, and U. C. Singh. Variable reduction techniques applied to molecular dynamics simulations. In W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson, editors, Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, volume 2, chapter 24. ESCOM, Leiden, The Netherlands, 1993.

    Google Scholar 

  86. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, volume 14 of Springer Series in Computational Mathematics. Springer-Verlag, New York, New York, 1991.

    Google Scholar 

  87. B. Garcia-Archilla, J.M. Sanz-Serna, and R.D. Skeel. Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comp., 1996. To appear, [Also Tech. Rept. 1996/7, Dep. Math. Applic. Comput., Univ. Valladolid, Valladolid, Spain].

    Google Scholar 

  88. E. Barth and T. Schlick. Overcoming stability limitations in biomolecular dynamics: I. combining force splitting via extrapolation with Langevin dynamics in LN. J. Chem. Phys., 109: 1617–1632, 1998.

    Article  Google Scholar 

  89. E. Barth and T. Schlick. Extrapolation versus impulse in multiple-timestepping schemes: II. linear analysis and applications to Newtonian and Langevin dynamics. J. Chem. Phys., 109: 1632–1642, 1998.

    Google Scholar 

  90. M. E. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale molecular dynamics. J. Chem. Phys., 97: 1990–2001, 1992.

    Article  Google Scholar 

  91. A. Sandu and T. Schlick. Further analysis of impulse and extrapolation force splitting in molecular dynamics. J. Comp. Phys., 1998. Submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schlick, T. (1999). Some Failures and Successes of Long-Timestep Approaches to Biomolecular Simulations. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics