Skip to main content

Parallel Molecular Dynamics Using Force Decomposition

  • Conference paper
Computational Molecular Dynamics: Challenges, Methods, Ideas

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 4))

  • 1914 Accesses

Abstract

Research interests in molecular dynamics (MD) and its applications have increased significantly over the past few decades. This is due partly to the advances in software and hardware components of computer technology. The main computational goal of recent research work in molecular dynamics has been to reduce the computational cost of the force calculations which evidently accounts for approximately ninety percent of the total CPU time for most MD simulations. This paper describes parallel algorithms for force calculations using the force decomposition approach. These parallel algorithms have been tested and found to be highly portable and scalable. Numerical experiments on IBM SP/2 indicate that these algorithms have improved speedups and efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. J. Alder and T. E. Wainright, “Studies in molecular dynamics II: Behavior of a small number of elastic spheres ”, J. Chern. Phys., vol 33, 1439–1447, 1960.

    Article  Google Scholar 

  2. M. P. Allen and D. J. Tildesley, Computer Simulation Of Liquids, Oxford science publication 1987.

    Google Scholar 

  3. J. Barnes and P. Hut, “A hierarchical O(N log N) force calculation algorithm ”, Nature, Vol 324, 446–49, 1986.

    Article  Google Scholar 

  4. D. Brown, J. H. R. Clarke, M. Okuda and T. Yamazaki, “A domain decomposition strategy for molecular dynamics simulations on distributed memory machines ”, Comp. Phys. Comm., Vol 74, 67–80, 1993.

    Article  Google Scholar 

  5. T. W. Clark, J. A. McCammon, L. R. Scott, “Parallel molecular dynamics ”, Proc. of the fifth SIAM conference on Parallel Processing for Scientific Computing, 338–44, 1992.

    Google Scholar 

  6. R. Duncan, “A survey of parallel computer architectures ”, Computer, Vol 23, no 2, 5–16, 1990.

    Article  Google Scholar 

  7. D. Fincham, “Choice of timestep in molecular dynamics simulation ”, Comp. Phys. Comm., Vol 40, no 2&3, 263–9, 1986.

    Article  Google Scholar 

  8. D. Fincham and B. J. Ralston, “Molecular dynamics simulation using the Cray-1 vector processing computer ”, Comp. Phys. Comm., Vol 23, no 2, 127–34, 1981.

    Article  Google Scholar 

  9. G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon and D. W. Walker, Solving Problems On Concurrent Processors: Volume 1, Prentice Hall, Englewood Cliffs, 1988.

    Google Scholar 

  10. S. K. Gray, D. W. Noid and B. G. Sumpter, “Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods ”, J. Chem. Phys., Vol 101, no 5, 4062–72, 1994.

    Article  Google Scholar 

  11. L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations ”, J. Comput. Phys., Vol 73, no 2, 325–48, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. L. Greenwell, R. K. Kalia, J. C. Patterson and P. Vashishta, “Molecular dynamics algorithm on the connection machine ”, Int. J. High Speed Computing, Vol 1, no 2, 321–8, 1989.

    Article  MATH  Google Scholar 

  13. W. Gropp, E. Lusk and A. Skjellum, Using MPI Portable Parallel Programming with Message-Passing Interface, Scientific and Engineering Computation series, 1994.

    Google Scholar 

  14. S. Gupta, “Computing aspects of molecular dynamics simulation ”, Comp. Phys. Comm., Vol 70, no 2, 243–70, 1992.

    Article  Google Scholar 

  15. J. M. Haile, Molecular Dynamics Simulation, Elementary methods, John Wiley and sons, 1992.

    Google Scholar 

  16. P. A. J Hilbers and K. Esselink, “Parallel computing and molecular dynamics simulations ”, Computer Simulations in Chemical Physics, Proc. of the NATO advanced study institute on new perspectives in computer simulations in chemical physics, 473–95, 1993.

    Google Scholar 

  17. R. W. Hockney and J. W. Eastwood, Computer Simulations Using Particles, Institute of Physics Publishing, Bristol, 1988..au]18._Y. Hwang, R. Das, F. H. Saltz, M. Hadožček and B. R. Brooks, “Parallelizing molecular dynamics programs for distributed-memory machines ”, IEEE Computational Science and Engineering, Vol 2, no 2, 18–29, 1995.

    Chapter  Google Scholar 

  18. D. Janežič and F. Merzel, “An efficient symplectic integration algorithm for molecular dynamics simulations ”, J. Chem. Info. Comp. Sci., Vol 35, no 2, 321–6, 1995.

    Article  Google Scholar 

  19. D. Janežič and R. Trobec, “Parallelization of an implicit Runge-Kutta method for molecular dynamics integration ”, J. Chem. Info. Comp. Sci., Vol 34, no 3, 641–6, 1994.

    Article  Google Scholar 

  20. T.G. Mattson and G. R. Shanker, “Portable molecular dynamics software for parallel computing ”, ACS Symposium Series 592, 133–50.

    Google Scholar 

  21. R. Murty and D. Okunbor, “Efficient parallel algorithms for molecular dynamics simulations ”, submitted to Parallel Computing.

    Google Scholar 

  22. D. W. Noid, B. G. Sumpter, B. Wunderlich and G. A. Pfeffer, “Molecular dynamics simulations of polymers: Methods for optimal Fortran programming ”, J. Comput. Chem., 11(2), 236–241, 1990.

    Article  Google Scholar 

  23. D. Okunbor, “Integration methods for iV-body problems ”, Proc. of the second International Conference On Dynamic Systems, 1996.

    Google Scholar 

  24. D. Okunbor, “Parallel molecular dynamics on connection machines ”, Wuhan J. Natural Sci., Vol 11, no 3&4, 337–43, 1996.

    Article  Google Scholar 

  25. D. Okunbor, “Canonical methods for Hamiltonian systems: Numerical experiments ”, Physica D, 60, 314–322, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Okunbor and R. Skeel, “Canonical numerical methods for molecular dynamics simulations ”, J. Comput. Chem., 15(1), 72–79, 1994.

    Article  Google Scholar 

  27. S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics ”, J. Comput. Phys., Vol 117, no 1, 1–19, 1995.

    Article  MATH  Google Scholar 

  28. S. Plimpton and B. Hendrickson, “A new parallel method for molecular dynamics simulation of macromolecular systems ”, J. Comput. Chem., Vol 17, no 3, 326–37, 1996.

    Article  Google Scholar 

  29. H. Schreiber, O. Steinhauser and P. Schuster, “Parallel molecular dynamics of biomolecules ”, Parallel Computing, Vol 18, no 5, 557–73, 1992.

    Article  MATH  Google Scholar 

  30. R. D. Skeel and J. J. Biesiadecki, “Symplectic integrations with variable stepsize ”, Annals Numer. Math., 191–198, 1994.

    Google Scholar 

  31. W. Smith, “A replicated data molecular dynamics strategy for the parallel Ewald sum ”, Comp. Phys. Comm., Vol 62, no 3, 392–406, 1992.

    Article  Google Scholar 

  32. W. Smith, “Molecular dynamics on hypercube parallel computers ”, Comp. Phys. Comm., Vol 62, no 2&3, 229–48, 1991.

    Article  Google Scholar 

  33. W. Smith and T. R. Forester, “Parallel macromolecular simulations and the replicated data strategy ”, Comp. Phys. Comm., Vol 79, no 1, 52–62, 1994.

    Article  Google Scholar 

  34. V. E. Taylor, R. L. Stevens and K. E. Arnold, “Parallel molecular dynamics: Communication requirements for massively parallel machines ”, Proc. Frontiers’ 95, the fifth symposium on the frontiers of Massively Parallel Computation, 156–63, 1994.

    Google Scholar 

  35. R. Trobec, I. Jerebic and D. Janežič, “Parallel algorithms for molecular dynamics integration ”, Parallel Computing, Vol 19, no 9, 1029–39, 1993.

    Article  Google Scholar 

  36. A. Windemuth, “Advanced algorithms for molecular dynamics simulations: The program PMD ”, ACS Symposium Series 592, 151–69, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okunbor, D., Murty, R. (1999). Parallel Molecular Dynamics Using Force Decomposition. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics