Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 5))

Abstract

In these notes we present an introduction to the theory of kinetic schemes for gas dynamics. Several ideas developed in recent years on stability and entropy analysis are reviewed. This compendium is intended to be self-contained and self-consistent even though some results are not entirely proved and a preliminary knowledge of elementary hyperbolic theory is supposed (cf Serre [28], Smoller [29], Lax [15]).

Several subjects are not treated: the modifications proposed by Prendergast & Xu [22], [31] and Deshpande [7] for improving accuracy, the early works by Brenier [1] and Giga & Miyakawa [9] on scalar equations, those of Kaniel [12] on gas dynamics with entropy conservation, discrete velocity schemes and the related subject of relaxation schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenier, Y.: Résolution d’équations d’évolution quasilinéaire en dimension N d’espace à l’aide d’équations linéaires en dimension N+1. J. diff. Eq. 50 (1983) 375–390

    Article  MathSciNet  MATH  Google Scholar 

  2. Cercignani, C.: The Boltzmann Equation and its applications. Springer-Verlag, Berlin, New-York (1994)

    Google Scholar 

  3. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer-Verlag, Berlin, New-York (1994)

    MATH  Google Scholar 

  4. Coquel, F., Perthame, B.: A kinetic formalism for pressure laws of real gases. Work in preparation.

    Google Scholar 

  5. Croisille, J.P., Delorme, P.: Kinetic symmetrisation and pressure laws for the Euler equations. Phys. D 57 (1992) N. 3–4, 395–426

    MathSciNet  Google Scholar 

  6. Deshpande, S.: Kinetic Theory based new upwind methods for inviscid compressible flows. AIAA paper 96–0275 (1986)

    Google Scholar 

  7. Deshpande, S.: A second order accurate, kinetic theory based method for in-viscid compressible flows. NASA Technical paper N 2613 (1986)

    Google Scholar 

  8. Estivalezes, J.L., Villedieu, P.: Higher order positivity preserving kinetic schemes for the compressible Euler equations. SIAM J. Num. Anal. 33 (1996) N. 5, 2050–2067

    Article  MathSciNet  MATH  Google Scholar 

  9. Giga, Y., Miyakawa, T.: A kinetic construction of global solutions of first-order quasilinear equations. Duke Math. J. 50 (1983) 505–515

    MathSciNet  MATH  Google Scholar 

  10. Godlewski, E., Raviart, P.—A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Appl. Math. 118. Springer Verlag (1996)

    Google Scholar 

  11. Harten, A., Lax, P.D., Van Leer, B.: On upstream differencing and Godunovtype schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaniel, S.: A kinetic model for the compressible flow equations. Ind. Univ. Math. J. (1988)N.3 537–563

    Article  MathSciNet  Google Scholar 

  13. Khobalatte, B., Perthame, B.: Maximum principle on the entropy and second order kinetic schemes. Math. Comp. 62 (205) (1994) 119–135

    Article  MathSciNet  MATH  Google Scholar 

  14. LeTallec, P., Perlat, J.P., Perthame, B.: The Gaussian BGK model of Boltzmann equation with small Prandtl number. Work in preparation.

    Google Scholar 

  15. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Conf. Board Math. Sc. 11 SIAM (1973)

    Google Scholar 

  16. Leveque, R.J.: Numerical Methods for Conservation Laws. Lectures in Mathematics, ETH Zürrich, Birkhäuser (1992)

    Book  Google Scholar 

  17. Lifshitz, E.M., Pitaevskii, L.P.: Course in theoretical physics 10, Physical kinetics. Pergamon Press (1981)

    Google Scholar 

  18. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. Parts I to III. J. of Math. of Kyoto Univ. 34 N 2 (1994) 391–461

    Google Scholar 

  19. Mandal, J.C., Deshpande, S.M.: Kinetic Flux Vector Splitting for Euler Equations. Computers and fluids 23 No. 2 447.

    Google Scholar 

  20. Perthame, B.: Boltzmann type schemes and the entropy condition. SIAM J. on Num. Anal. 27,6 (1990), 1405–1421

    Article  MathSciNet  MATH  Google Scholar 

  21. Perthame, B.: Second Order Boltzmann Schemes for compressible Euler Equations in one and two space dimensions. SIAM J. on Num. Anal. 29,1 (1992), 1–19

    Article  MathSciNet  MATH  Google Scholar 

  22. Prendergast, K.H., Xu, K.: Numerical Hydrodynamics from gas kinetic theory. J. Comp. Phys. 109 (1993) 53

    Article  MathSciNet  MATH  Google Scholar 

  23. Pullin, D.I.: Direct simulation method for compressible inviscid ideal-gas-flow. J. Comput. Phys. 34 (1980) 231–244

    Article  MATH  Google Scholar 

  24. Raghurama Rao, S.V., Deshpande, S.M.: Peculiar velocity based upwind method for inviscid compressible flows, Comp. Fluid Dynamics J., Japan 3 (4) (1994), 415–432.

    Google Scholar 

  25. Reitz, R.D.: One-dimensional compressible gas dynamics calculations using the Boltzmann equations. J. Comput. Phys. 42 (1981) 108–123

    Article  MATH  Google Scholar 

  26. Roe, P.L.: Approximate Riemann Solvers, Parameter Vectors and Difference Schemes. J. Comput. Phys. 43 357.

    Google Scholar 

  27. Sanders, R., Prendergast, K.H.: the possible relation of the three kiloparsec arm to explosions in the galactic nucleus. Astrophysical Journal 188 (1974)

    Google Scholar 

  28. Serre, D.: Systèmes hyperboliques de lois de conservation, Parties I et II. Diderot, Paris (1996)

    Google Scholar 

  29. Smoller, J.: Shock waves and reaction-diffusion equations. Springer, Berlin (1982)

    Google Scholar 

  30. Tadmor, E.: A minimum entropy principle in the gas dynamics equations. Appl. Num. Math. 2 (1986) 211–219

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, K., Prendergast, K.H.: Multidimensional hydrocode from kinetic theory. J. Comp. Physics, 114 (1994) 9–17

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perthame, B. (1999). An Introduction to Kinetic Schemes for Gas Dynamics. In: Kröner, D., Ohlberger, M., Rohde, C. (eds) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58535-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58535-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65081-2

  • Online ISBN: 978-3-642-58535-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics