Skip to main content

L Systems

  • Chapter
  • First Online:
Handbook of Formal Languages

Abstract

L systems are parallel rewriting systems which were originally introduced in 1968 to model the development of multicellular organisms [L1]. The basic ideas gave rise to an abundance of language-theoretic problems, both mathematically challenging and interesting from the point of view of diverse applications. After an exceptionally vigorous initial research period (roughly up to 1975; in the book [RSed2], published in 1985, the period up to 1975 is referred to as “when L was young” [RS2]), some of the resulting language families, notably the families of D0L, 0L, DT0L, E0L and ET0L languages, had emerged as fundamental ones in the parallel or L hierarchy. Indeed, nowadays the fundamental L families constitute a similar testing ground as the Chomsky hierarchy when new devices (grammars, automata, etc.) and new phenomena are investigated in language theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Adleman, Molecular computation of solutions to combinatorial problems. Science 266, (Nov.1994) 1021–1024.

    Google Scholar 

  2. L. Adleman, On constructing a molecular computer. Manuscript in circulation.

    Google Scholar 

  3. M. Albert and J. Lawrence, A proof of Ehrenfeucht’s conjecture. Theoret. Comput. Sci. 41 (1985) 121–123.

    MathSciNet  MATH  Google Scholar 

  4. M. Andrasiu, G. Paun, J. Dassow and A. Salomaa, Language-theoretic problems arising from Richelieu cryptosystems. Theoret. Comput. Sci. 116 (1993) 339–357.

    MathSciNet  MATH  Google Scholar 

  5. J. Berstel, Sur les pôles et le quotient de Hadamard de séries N-rationelles, C. R. Acad.Sci., Sér.A 272 (1971) 1079–1081.

    MATH  Google Scholar 

  6. J. Berstel and D. Perrin, Theory of codes. Academic Press, New York (1985).

    MATH  Google Scholar 

  7. V. Bruyere, Codes prefixes. Codes a delai dechiffrage borne. Nouvelle thèse, Université de Mons (1989).

    Google Scholar 

  8. C. Choffrut, Iterated substitutions and locally catenative systems: a decidability result in the binary case. In [RSed3], 49–92.

    MATH  Google Scholar 

  9. K. Culik II and I. Fris, The decidability of the equivalence problem for D0L systems. Inform. and Control 35 (1977) 20–39.

    MATH  Google Scholar 

  10. K. Culik II and J. Karhumäki, Systems of equations over a free monoid and Ehrenfeucht’s conjecture. Discrete Math. 43 (1983) 139–153.

    MathSciNet  MATH  Google Scholar 

  11. K. Culik II and J. Karhumäki, A new proof for the D0L sequence equivalence problem and its implications. In [RSed2], 63–74.

    Google Scholar 

  12. K. Culik II and A. Salomaa, On the decidability of homomorphism equivalence for languages. J. Comput. Systems Sci. 17 (1978) 163–175.

    MathSciNet  MATH  Google Scholar 

  13. K. Culik II and A. Salomaa, Ambiguity and decision problems concerning number systems. Inform. and Control 56 (1983) 139–153.

    MathSciNet  MATH  Google Scholar 

  14. J. Dassow, Eine Neue Funktion für Lindenmayer-Systeme. Elektron. Informationsverarb. Kybernet. 12 (1976) 515–521.

    MathSciNet  MATH  Google Scholar 

  15. J. Dassow, On compound Lindenmayer systems. In [RSed2], 75–86.

    Google Scholar 

  16. J. Dassow, G. Paun and A. Salomaa, On thinness and slenderness of L languages. EATCS Bull. 49 (1993) 152–158.

    MATH  Google Scholar 

  17. J. Dassow, G. Paun and A. Salomaa, On the union of 0L languages. Inform. Process. Lett. 47 (1993) 59–63.

    MathSciNet  MATH  Google Scholar 

  18. A. Ehrenfeucht and G. Rozenberg, The equality of E0L languages and codings of 0L languages. Internat. J. Comput. Math. 4 (1974) 95–104.

    MathSciNet  MATH  Google Scholar 

  19. A. Ehrenfeucht and G. Rozenberg, Simplifications of homomorphisms, Inform. and Control 38 (1978) 298–309.

    MathSciNet  MATH  Google Scholar 

  20. A. Ehrenfeucht and G. Rozenberg, Elementary homomorphisms and a solution of the D0L sequence equivalence problem. Theoret. Comput. Sci. 7 (1978) 169–183.

    MathSciNet  MATH  Google Scholar 

  21. A. Ehrenfeucht and G. Rozenberg, On a bound for the D0L sequence equivalence problem. Theoret. Comput. Sci. 12 (1980) 339–342.

    MathSciNet  MATH  Google Scholar 

  22. J. Engelfriet, The ET0L hierarchy is in the 01 hierarchy. In [RSed2], 100–110.

    Google Scholar 

  23. H. Fernau, Remarks on adult languages of propagating systems with restricted parallelism. In [RSed4], 90–101.

    Google Scholar 

  24. G. Hardy and E. M. Wright, An introduction to the Theory of Numbers. Oxford Univ. Press, London (1954).

    MATH  Google Scholar 

  25. T. Harju, A polynomial recognition algorithm for the EDT0L languages, Elektron. Informationsverarb. Kybernet. 13 (1977) 169–177.

    MathSciNet  MATH  Google Scholar 

  26. J. Harrison, Morphic congruences and D0L languages. Theoret. Comput. Sci. 134 (1994) 537–544.

    MathSciNet  MATH  Google Scholar 

  27. J. Harrison, Dynamical properties of PWD0L systems. Theoret. Comput. Sci. 14 (1995) 269–284.

    MATH  Google Scholar 

  28. T. Head, Splicing schemes and DNA. In [RSed3], 371–384.

    Google Scholar 

  29. G. T. Herman, The computing ability of a developmental model for filamentous organisms. J. Theoret. Biol. 25 (1969) 421–435.

    Google Scholar 

  30. G. T. Herman, Models for cellular interactions in development withough polarity of individual cells. Internat. J. System Sci. 2 (1971) 271–289; 3 (1972) 149–175.

    MATH  Google Scholar 

  31. G. T. Herman and G. Rozenberg, Developmental Systems and Languages North-Holland, Amsterdam (1975).

    MATH  Google Scholar 

  32. G. T. Herman and A. Walker, Context-free languages in biological systems. Internat. J. Comput. Math. 4 (1975) 369–391.

    MathSciNet  MATH  Google Scholar 

  33. J. Honkala, Unique representation in number systems and L codes. Discrete Appl. Math. 4 (1982) 229–232.

    MathSciNet  MATH  Google Scholar 

  34. J. Honkala, Bases and ambiguity of number systems. Theoret. Comput. Sci. 31 (1984) 61–71.

    MathSciNet  MATH  Google Scholar 

  35. J. Honkala, A decision method for the recognizability of sets defined by number systems. RAIRO 20 (1986) 395–403.

    MathSciNet  MATH  Google Scholar 

  36. J. Honkala, It is decidable whether or not a permutation-free morphism is an L code. Internat. J. Computer Math. 22 (1987) 1–11.

    MATH  Google Scholar 

  37. J. Honkala, On number systems with negative digits. Annales Academiae Scientiarum Fennicae, Series A. I. Mathematica 14 (1989) 149–156.

    Google Scholar 

  38. J. Honkala, On unambiguous number systems with a prime power base. Acta Cybern. 10 (1992) 155–163.

    MathSciNet  MATH  Google Scholar 

  39. J. Honkala, Regularity properties of L ambiguities of morphisms. In [RSed3], 25–47.

    Google Scholar 

  40. J. Honkala, On D0L systems with immigration. Theoret. Comput. Sci. 120 (1993) 229–245.

    MathSciNet  MATH  Google Scholar 

  41. J. Honkala, A decision method for the unambiguity of sets defined by number systems. J. of Univ. Comput. Sci. 1 (1995) 648–653.

    MathSciNet  MATH  Google Scholar 

  42. J. Honkala and A. Salomaa, Characterization results about L codes. RAIRO 26 (1992) 287–301.

    MathSciNet  MATH  Google Scholar 

  43. M. Ito and G. Thierrin, D0L schemes and recurrent words. In [RSed2], 157–166.

    Google Scholar 

  44. N. Jones and S. Skyum, Complexity of some problems concerning L systems. Lecture Notes in Computer Science 52 Springer-Verlab, Berlin (1977) 301–308.

    MATH  Google Scholar 

  45. H. Jürgensen and D. Matthews, Stochastic 0L systems and formal power series. In [RSed2], 167–178.

    Google Scholar 

  46. J. Karhumäki, An example of a PD2L system with the growth type 2 1/2. Inform. Process. Lett. 2 (1974) 131–134.

    MATH  Google Scholar 

  47. J. Karhumäki, On Length Sets of L Systems, Licentiate thesis, Univ. of Turku (1974).

    MATH  Google Scholar 

  48. J. Karhumäki, Two theorems concerning recognizable N-subsets of σ * . Theoret. Comput. Sci. 1 (1976) 317–323.

    MathSciNet  MATH  Google Scholar 

  49. L. Kari, On insertions and deletions in formal languages. Ph.D. thesis, University of Turku, Finland, 1991.

    Google Scholar 

  50. L. Kari, Power of controlled insertion and deletion. Lecture Notes in Computer Science, 812 Springer-Verlag, Berlin (1994), 197–212.

    Google Scholar 

  51. L. Kari, A. Mateescu, G. Paun, A. Salomaa. On parallel deletions applied to a word, RAIRO - Theoretical Informations and Applications, vol.29, 2(1995), 129–144.

    MathSciNet  MATH  Google Scholar 

  52. L. Kari, G. Rozenberg and A. Salomaa, Generalized D0L trees. Acta Cybern., 12 (1995) 1–9.

    MathSciNet  MATH  Google Scholar 

  53. L. Kari, G. Thierrin, Contextual insertions/deletions and computability. To appear in Information and Computation. Submitted.

    Google Scholar 

  54. T. Katayama, M. Okamoto and H. Enomoto, Characterization of the structure-generating functions of regular sets and the D0L growth functions. Inform. and Control 36 (1978) 85–101.

    MATH  Google Scholar 

  55. A. Kelemenová, Complexity of 0L systems. In [RSed2], 179–192.

    Google Scholar 

  56. Y. Kobuchi, Interaction strength of DIL systems. In [RSed3], 107–114.

    MATH  Google Scholar 

  57. W. Kuich, Lindenmayer systems generalized to formal power series and their growth functions. In [RSed4], 171–178.

    Google Scholar 

  58. W. Kuich and A. Salomaa, Semirings, Automata,Languages. Springer-Verlag, Berlin (1986).

    MATH  Google Scholar 

  59. B. Lando, Periodicity and ultimate periodicity of D0L systems. Theoret. Comput. Sci. 82 (1991) 19–33.

    MathSciNet  MATH  Google Scholar 

  60. K. J. Lange and M. Schudy, The complexity of the emptiness problem for E0L systems. In [RSed3], 167–176.

    Google Scholar 

  61. M. Latteux, Sur les T0L systémes unaires. RAIRO 9 (1975) 51–62.

    MATH  Google Scholar 

  62. M. Latteux, Deux problèmes décidables concernant les TUL langages. Discrete Math. 17 (1977) 165–172.

    MathSciNet  MATH  Google Scholar 

  63. A. Lindenmayer, Mathematical models for cellular interaction in development I and II. J. Theoret. Biol. 18 (1968) 280–315.

    Google Scholar 

  64. A. Lindenmayer, Developmental systems without cellular interactions, their languages and grammars. J. Theoret. Biol. 30 (1971) 455–484.

    Google Scholar 

  65. A. Lindenmayer, Developmental algorithms for multicellular organisms: a survey of L systems. J. Theoret. Biol. 54 (1975) 3–22.

    MathSciNet  Google Scholar 

  66. A. Lindenmayer, Models for multi-cellular development: characterization, inference and complexity of L-systems. Lecture Notes in Computer Science 281 Springer-Verlag, Berlin (1987) 138–168.

    MATH  Google Scholar 

  67. A. Lindenmayer and H. Jürgensen, Grammars of development: discretestate models for growth, differentiation and gene expression in modular organisms. In [RSed3], 3–24.

    Google Scholar 

  68. M. Linna, The D0L-ness for context-free languages is decidable. Inform. Process. Lett. 5 (1976) 149–151.

    MathSciNet  MATH  Google Scholar 

  69. M. Linna, The decidability of the D0L prefix problem. Intern. J. Comput. Math. 6 (1977) 127–142.

    MathSciNet  MATH  Google Scholar 

  70. G. Makanin, The problem of solvability of equations in a free semigroup. Math. USSR Sb. 32 (1977) 129–138.

    MathSciNet  MATH  Google Scholar 

  71. H. Maurer, A. Salomaa and D. Wood, E0L forms. Acta Inform. 8 (1977) 75–96.

    MathSciNet  MATH  Google Scholar 

  72. H. Maurer, A. Salomaa, D. Wood, L codes and number systems. Theoret. Comput. Sci. 22 (1983) 331–346.

    MathSciNet  MATH  Google Scholar 

  73. H. Maurer, A. Salomaa and D. Wood, Bounded delay L codes. Theoret. Comput. Sci. 84 (1991) 265–279.

    MathSciNet  MATH  Google Scholar 

  74. L. M. Milne-Thompson, The Calculus of Finite Differences. Macmillan, New York (1951).

    Google Scholar 

  75. J. Mäenpää, G. Rozenberg and A. Salomaa, Bibliography of L systems. Leiden University Computer Science Technical Report (1981).

    Google Scholar 

  76. M. Nielsen, On the decidability of some equivalence problems for D0L systems. Inform. and Control 25 (1974) 166–193.

    MATH  Google Scholar 

  77. M. Nielsen, G. Rozenberg, A. Salomaa and S. Skyum, Nonterminals, homomorphisms and codings in different variations of 0L systems, I and II. Acta Inform. 3 (1974) 357–364; 4 (1974) 87–106.

    MATH  Google Scholar 

  78. V. Niemi. A normal form for structurally equivalent E0L grammars. In [RSed3], 133–148.

    Google Scholar 

  79. T. Nishida, Quasi-deterministic 0L systems. Lecture Notes in Computer Science 623 Springer-Verlag, Berlin (1992) 65–76.

    Google Scholar 

  80. T. Nishida and A. Salomaa, Slender 0L languages. Theoret. Comput. Sci. 158 (1996) 161–176.

    MathSciNet  MATH  Google Scholar 

  81. Th.Ottman and D. Wood, Simplifications of E0L grammars. In [RSed3], 149–166.

    Google Scholar 

  82. G. Paun, Parallel communicating grammar systems of L systems. In [RSed3], 405–418.

    Google Scholar 

  83. G. Paun and A. Salomaa, Decision problems concerning the thinness of D0L languages. EATCS Bull. 46 (1992) 171–181.

    MATH  Google Scholar 

  84. A. Paz and A. Salomaa, Integral sequential word functions and growth equivalence of Lindenmayer systems. Inform. and Control 23 (1973) 313–343.

    MathSciNet  MATH  Google Scholar 

  85. P. Prusinkiewicz, L. Kari, Subapical bracketed L systems. Lecture Notes in Computer Science 1073 Springer-Verlag, Berlin (1994) 550–565.

    MATH  Google Scholar 

  86. P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants. Springer-Verlag, Berlin (1990).

    MATH  Google Scholar 

  87. G. Rozenberg, T0L systems and languages. Inform. and Control 23 (1973) 262–283.

    Google Scholar 

  88. G. Rozenberg, Extension of tabled 0L systems and languages. Internat. J. Comput. Inform. Sci. 2 (1973) 311–334.

    MATH  Google Scholar 

  89. G. Rozenberg, K. Ruohonen and A. Salomaa, Developmental systems with fragmentation. Internat. J. Comput. Math. 5 (1976) 177–191.

    MathSciNet  MATH  Google Scholar 

  90. G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic Press, New York (1980).

    MATH  Google Scholar 

  91. G. Rozenberg and A. Salomaa, When L was young. In [RSed2], 383–392.

    Google Scholar 

  92. G. Rozenberg and A. Salomaa, Cornerstones of Undecidability. Prentice Hall, New York (1994).

    MATH  Google Scholar 

  93. G. Rozenberg and A. Salomaa (eds.), L systems. Lecture Notes in Computer Science 15 Springer-Verlag, Berlin (1974).

    MATH  Google Scholar 

  94. G. Rozenberg and A. Salomaa (eds.), The Book of L. Springer-Verlag, Berlin (1985).

    Google Scholar 

  95. G. Rozenberg and A. Salomaa (eds.), Lindenmayer Systems. Springer-Verlag, Berlin (1992).

    Google Scholar 

  96. G. Rozenberg and A. Salomaa (eds.), Developments in Language Theory. World Scientific, Singapore (1994).

    Google Scholar 

  97. K. Ruohonen, Zeros of Z-rational functions and D0L equivalence, Theoret. Comput. Sci. 3 (1976) 283–292.

    MathSciNet  MATH  Google Scholar 

  98. K. Ruohonen, The decidability of the F0L-D0L equivalence problem. Inform. Process. Lett. 8 (1979) 257–261.

    MathSciNet  MATH  Google Scholar 

  99. K. Ruohonen, The inclusion problem for D0L langugaes. Elektron. Informationsverarb. Kybernet. 15 (1979) 535–548.

    MathSciNet  MATH  Google Scholar 

  100. K. Ruohonen, The decidability of the D0L-DT0L equivalence problem. J. Comput. System Sci. 22 (1981) 42–52.

    MathSciNet  MATH  Google Scholar 

  101. A. Salomaa, Formal Languages. Academic Press, New York (1973).

    MATH  Google Scholar 

  102. A. Salomaa, Solution of a decision problem concerning unary Lindenmayer systems. Discrete Math. 9 (1974) 71–77.

    MathSciNet  MATH  Google Scholar 

  103. A. Salomaa, On exponential growth in Lindenmayer systems. Indag. Math. 35 (1973) 23–30.

    MathSciNet  MATH  Google Scholar 

  104. A. Salomaa, Comparative decision problems between sequential and parallel rewriting. Proc. Symp. Uniformly Structured Automata Logic, Tokyo (1975) 62–66.

    Google Scholar 

  105. A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Rockville (1981).

    MATH  Google Scholar 

  106. A. Salomaa, Simple reductions between D0L language and sequence equivalence problems. Discrete Appl. Math. 41 (1993) 271–274.

    MathSciNet  MATH  Google Scholar 

  107. A. Salomaa, Developmental models for artificial life: basics of L systems. In G. Paun (ed.) Artificial life: Grammatical Models. Black Sea University Press (1995) 22–32.

    Google Scholar 

  108. A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series. Springer-Verlag, Berlin (1978).

    MATH  Google Scholar 

  109. K. Salomaa, D. Wood and S. Yu, Complexity of E0L structural equivalence. Lecture Notes in Computer Science. 841 Springer-Verlag, Berlin (1994) 587–596.

    MATH  Google Scholar 

  110. K. Salomaa and S. Yu, Decidability of structural equivalence of E0L grammars. Theoret. Comput. Sci. 82 (1991) 131–139.

    MathSciNet  MATH  Google Scholar 

  111. W. Smith, A. Schweitzer, DNA computers in vitro and in vivo. NEC Research Report, Mar.31, 1995.

    Google Scholar 

  112. M. Soittola, Remarks on D0L growth sequences. RAIRO 10 (1976) 23–34.

    MATH  Google Scholar 

  113. M. Soittola, Positive rational sequences. Theoret. Comput. Sci. 2 (1976) 317–322.

    MathSciNet  MATH  Google Scholar 

  114. A. Szilard, Growth Functions of Lindenmayer Systems, Tech. Rep., Cornput. Sci, Dep., Univ. of Western Ontario (1971).

    Google Scholar 

  115. J. van Leeuwen, The membership question for ET0L languages is polynomially complete. Inform. Process. Lett. 3 (1975) 138–143.

    MATH  Google Scholar 

  116. P. Vitany, Structure of growth in Lindenmayer Systems. Indag. Math. 35 (1973) 247–253.

    MathSciNet  Google Scholar 

  117. T. Yokomori, Graph-controlled systems-an extension of 0L systems. In [RSed2], 461–471.

    Google Scholar 

  118. T. Yokomori, Inductive inference of 0L languages. In [RSed3], 115–132.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kari, L., Rozenberg, G., Salomaa, A. (1997). L Systems. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59136-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59136-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63863-3

  • Online ISBN: 978-3-642-59136-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics