Abstract
L systems are parallel rewriting systems which were originally introduced in 1968 to model the development of multicellular organisms [L1]. The basic ideas gave rise to an abundance of language-theoretic problems, both mathematically challenging and interesting from the point of view of diverse applications. After an exceptionally vigorous initial research period (roughly up to 1975; in the book [RSed2], published in 1985, the period up to 1975 is referred to as “when L was young” [RS2]), some of the resulting language families, notably the families of D0L, 0L, DT0L, E0L and ET0L languages, had emerged as fundamental ones in the parallel or L hierarchy. Indeed, nowadays the fundamental L families constitute a similar testing ground as the Chomsky hierarchy when new devices (grammars, automata, etc.) and new phenomena are investigated in language theory.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Adleman, Molecular computation of solutions to combinatorial problems. Science 266, (Nov.1994) 1021–1024.
L. Adleman, On constructing a molecular computer. Manuscript in circulation.
M. Albert and J. Lawrence, A proof of Ehrenfeucht’s conjecture. Theoret. Comput. Sci. 41 (1985) 121–123.
M. Andrasiu, G. Paun, J. Dassow and A. Salomaa, Language-theoretic problems arising from Richelieu cryptosystems. Theoret. Comput. Sci. 116 (1993) 339–357.
J. Berstel, Sur les pôles et le quotient de Hadamard de séries N-rationelles, C. R. Acad.Sci., Sér.A 272 (1971) 1079–1081.
J. Berstel and D. Perrin, Theory of codes. Academic Press, New York (1985).
V. Bruyere, Codes prefixes. Codes a delai dechiffrage borne. Nouvelle thèse, Université de Mons (1989).
C. Choffrut, Iterated substitutions and locally catenative systems: a decidability result in the binary case. In [RSed3], 49–92.
K. Culik II and I. Fris, The decidability of the equivalence problem for D0L systems. Inform. and Control 35 (1977) 20–39.
K. Culik II and J. Karhumäki, Systems of equations over a free monoid and Ehrenfeucht’s conjecture. Discrete Math. 43 (1983) 139–153.
K. Culik II and J. Karhumäki, A new proof for the D0L sequence equivalence problem and its implications. In [RSed2], 63–74.
K. Culik II and A. Salomaa, On the decidability of homomorphism equivalence for languages. J. Comput. Systems Sci. 17 (1978) 163–175.
K. Culik II and A. Salomaa, Ambiguity and decision problems concerning number systems. Inform. and Control 56 (1983) 139–153.
J. Dassow, Eine Neue Funktion für Lindenmayer-Systeme. Elektron. Informationsverarb. Kybernet. 12 (1976) 515–521.
J. Dassow, On compound Lindenmayer systems. In [RSed2], 75–86.
J. Dassow, G. Paun and A. Salomaa, On thinness and slenderness of L languages. EATCS Bull. 49 (1993) 152–158.
J. Dassow, G. Paun and A. Salomaa, On the union of 0L languages. Inform. Process. Lett. 47 (1993) 59–63.
A. Ehrenfeucht and G. Rozenberg, The equality of E0L languages and codings of 0L languages. Internat. J. Comput. Math. 4 (1974) 95–104.
A. Ehrenfeucht and G. Rozenberg, Simplifications of homomorphisms, Inform. and Control 38 (1978) 298–309.
A. Ehrenfeucht and G. Rozenberg, Elementary homomorphisms and a solution of the D0L sequence equivalence problem. Theoret. Comput. Sci. 7 (1978) 169–183.
A. Ehrenfeucht and G. Rozenberg, On a bound for the D0L sequence equivalence problem. Theoret. Comput. Sci. 12 (1980) 339–342.
J. Engelfriet, The ET0L hierarchy is in the 01 hierarchy. In [RSed2], 100–110.
H. Fernau, Remarks on adult languages of propagating systems with restricted parallelism. In [RSed4], 90–101.
G. Hardy and E. M. Wright, An introduction to the Theory of Numbers. Oxford Univ. Press, London (1954).
T. Harju, A polynomial recognition algorithm for the EDT0L languages, Elektron. Informationsverarb. Kybernet. 13 (1977) 169–177.
J. Harrison, Morphic congruences and D0L languages. Theoret. Comput. Sci. 134 (1994) 537–544.
J. Harrison, Dynamical properties of PWD0L systems. Theoret. Comput. Sci. 14 (1995) 269–284.
T. Head, Splicing schemes and DNA. In [RSed3], 371–384.
G. T. Herman, The computing ability of a developmental model for filamentous organisms. J. Theoret. Biol. 25 (1969) 421–435.
G. T. Herman, Models for cellular interactions in development withough polarity of individual cells. Internat. J. System Sci. 2 (1971) 271–289; 3 (1972) 149–175.
G. T. Herman and G. Rozenberg, Developmental Systems and Languages North-Holland, Amsterdam (1975).
G. T. Herman and A. Walker, Context-free languages in biological systems. Internat. J. Comput. Math. 4 (1975) 369–391.
J. Honkala, Unique representation in number systems and L codes. Discrete Appl. Math. 4 (1982) 229–232.
J. Honkala, Bases and ambiguity of number systems. Theoret. Comput. Sci. 31 (1984) 61–71.
J. Honkala, A decision method for the recognizability of sets defined by number systems. RAIRO 20 (1986) 395–403.
J. Honkala, It is decidable whether or not a permutation-free morphism is an L code. Internat. J. Computer Math. 22 (1987) 1–11.
J. Honkala, On number systems with negative digits. Annales Academiae Scientiarum Fennicae, Series A. I. Mathematica 14 (1989) 149–156.
J. Honkala, On unambiguous number systems with a prime power base. Acta Cybern. 10 (1992) 155–163.
J. Honkala, Regularity properties of L ambiguities of morphisms. In [RSed3], 25–47.
J. Honkala, On D0L systems with immigration. Theoret. Comput. Sci. 120 (1993) 229–245.
J. Honkala, A decision method for the unambiguity of sets defined by number systems. J. of Univ. Comput. Sci. 1 (1995) 648–653.
J. Honkala and A. Salomaa, Characterization results about L codes. RAIRO 26 (1992) 287–301.
M. Ito and G. Thierrin, D0L schemes and recurrent words. In [RSed2], 157–166.
N. Jones and S. Skyum, Complexity of some problems concerning L systems. Lecture Notes in Computer Science 52 Springer-Verlab, Berlin (1977) 301–308.
H. Jürgensen and D. Matthews, Stochastic 0L systems and formal power series. In [RSed2], 167–178.
J. Karhumäki, An example of a PD2L system with the growth type 2 1/2. Inform. Process. Lett. 2 (1974) 131–134.
J. Karhumäki, On Length Sets of L Systems, Licentiate thesis, Univ. of Turku (1974).
J. Karhumäki, Two theorems concerning recognizable N-subsets of σ * . Theoret. Comput. Sci. 1 (1976) 317–323.
L. Kari, On insertions and deletions in formal languages. Ph.D. thesis, University of Turku, Finland, 1991.
L. Kari, Power of controlled insertion and deletion. Lecture Notes in Computer Science, 812 Springer-Verlag, Berlin (1994), 197–212.
L. Kari, A. Mateescu, G. Paun, A. Salomaa. On parallel deletions applied to a word, RAIRO - Theoretical Informations and Applications, vol.29, 2(1995), 129–144.
L. Kari, G. Rozenberg and A. Salomaa, Generalized D0L trees. Acta Cybern., 12 (1995) 1–9.
L. Kari, G. Thierrin, Contextual insertions/deletions and computability. To appear in Information and Computation. Submitted.
T. Katayama, M. Okamoto and H. Enomoto, Characterization of the structure-generating functions of regular sets and the D0L growth functions. Inform. and Control 36 (1978) 85–101.
A. Kelemenová, Complexity of 0L systems. In [RSed2], 179–192.
Y. Kobuchi, Interaction strength of DIL systems. In [RSed3], 107–114.
W. Kuich, Lindenmayer systems generalized to formal power series and their growth functions. In [RSed4], 171–178.
W. Kuich and A. Salomaa, Semirings, Automata,Languages. Springer-Verlag, Berlin (1986).
B. Lando, Periodicity and ultimate periodicity of D0L systems. Theoret. Comput. Sci. 82 (1991) 19–33.
K. J. Lange and M. Schudy, The complexity of the emptiness problem for E0L systems. In [RSed3], 167–176.
M. Latteux, Sur les T0L systémes unaires. RAIRO 9 (1975) 51–62.
M. Latteux, Deux problèmes décidables concernant les TUL langages. Discrete Math. 17 (1977) 165–172.
A. Lindenmayer, Mathematical models for cellular interaction in development I and II. J. Theoret. Biol. 18 (1968) 280–315.
A. Lindenmayer, Developmental systems without cellular interactions, their languages and grammars. J. Theoret. Biol. 30 (1971) 455–484.
A. Lindenmayer, Developmental algorithms for multicellular organisms: a survey of L systems. J. Theoret. Biol. 54 (1975) 3–22.
A. Lindenmayer, Models for multi-cellular development: characterization, inference and complexity of L-systems. Lecture Notes in Computer Science 281 Springer-Verlag, Berlin (1987) 138–168.
A. Lindenmayer and H. Jürgensen, Grammars of development: discretestate models for growth, differentiation and gene expression in modular organisms. In [RSed3], 3–24.
M. Linna, The D0L-ness for context-free languages is decidable. Inform. Process. Lett. 5 (1976) 149–151.
M. Linna, The decidability of the D0L prefix problem. Intern. J. Comput. Math. 6 (1977) 127–142.
G. Makanin, The problem of solvability of equations in a free semigroup. Math. USSR Sb. 32 (1977) 129–138.
H. Maurer, A. Salomaa and D. Wood, E0L forms. Acta Inform. 8 (1977) 75–96.
H. Maurer, A. Salomaa, D. Wood, L codes and number systems. Theoret. Comput. Sci. 22 (1983) 331–346.
H. Maurer, A. Salomaa and D. Wood, Bounded delay L codes. Theoret. Comput. Sci. 84 (1991) 265–279.
L. M. Milne-Thompson, The Calculus of Finite Differences. Macmillan, New York (1951).
J. Mäenpää, G. Rozenberg and A. Salomaa, Bibliography of L systems. Leiden University Computer Science Technical Report (1981).
M. Nielsen, On the decidability of some equivalence problems for D0L systems. Inform. and Control 25 (1974) 166–193.
M. Nielsen, G. Rozenberg, A. Salomaa and S. Skyum, Nonterminals, homomorphisms and codings in different variations of 0L systems, I and II. Acta Inform. 3 (1974) 357–364; 4 (1974) 87–106.
V. Niemi. A normal form for structurally equivalent E0L grammars. In [RSed3], 133–148.
T. Nishida, Quasi-deterministic 0L systems. Lecture Notes in Computer Science 623 Springer-Verlag, Berlin (1992) 65–76.
T. Nishida and A. Salomaa, Slender 0L languages. Theoret. Comput. Sci. 158 (1996) 161–176.
Th.Ottman and D. Wood, Simplifications of E0L grammars. In [RSed3], 149–166.
G. Paun, Parallel communicating grammar systems of L systems. In [RSed3], 405–418.
G. Paun and A. Salomaa, Decision problems concerning the thinness of D0L languages. EATCS Bull. 46 (1992) 171–181.
A. Paz and A. Salomaa, Integral sequential word functions and growth equivalence of Lindenmayer systems. Inform. and Control 23 (1973) 313–343.
P. Prusinkiewicz, L. Kari, Subapical bracketed L systems. Lecture Notes in Computer Science 1073 Springer-Verlag, Berlin (1994) 550–565.
P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants. Springer-Verlag, Berlin (1990).
G. Rozenberg, T0L systems and languages. Inform. and Control 23 (1973) 262–283.
G. Rozenberg, Extension of tabled 0L systems and languages. Internat. J. Comput. Inform. Sci. 2 (1973) 311–334.
G. Rozenberg, K. Ruohonen and A. Salomaa, Developmental systems with fragmentation. Internat. J. Comput. Math. 5 (1976) 177–191.
G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic Press, New York (1980).
G. Rozenberg and A. Salomaa, When L was young. In [RSed2], 383–392.
G. Rozenberg and A. Salomaa, Cornerstones of Undecidability. Prentice Hall, New York (1994).
G. Rozenberg and A. Salomaa (eds.), L systems. Lecture Notes in Computer Science 15 Springer-Verlag, Berlin (1974).
G. Rozenberg and A. Salomaa (eds.), The Book of L. Springer-Verlag, Berlin (1985).
G. Rozenberg and A. Salomaa (eds.), Lindenmayer Systems. Springer-Verlag, Berlin (1992).
G. Rozenberg and A. Salomaa (eds.), Developments in Language Theory. World Scientific, Singapore (1994).
K. Ruohonen, Zeros of Z-rational functions and D0L equivalence, Theoret. Comput. Sci. 3 (1976) 283–292.
K. Ruohonen, The decidability of the F0L-D0L equivalence problem. Inform. Process. Lett. 8 (1979) 257–261.
K. Ruohonen, The inclusion problem for D0L langugaes. Elektron. Informationsverarb. Kybernet. 15 (1979) 535–548.
K. Ruohonen, The decidability of the D0L-DT0L equivalence problem. J. Comput. System Sci. 22 (1981) 42–52.
A. Salomaa, Formal Languages. Academic Press, New York (1973).
A. Salomaa, Solution of a decision problem concerning unary Lindenmayer systems. Discrete Math. 9 (1974) 71–77.
A. Salomaa, On exponential growth in Lindenmayer systems. Indag. Math. 35 (1973) 23–30.
A. Salomaa, Comparative decision problems between sequential and parallel rewriting. Proc. Symp. Uniformly Structured Automata Logic, Tokyo (1975) 62–66.
A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Rockville (1981).
A. Salomaa, Simple reductions between D0L language and sequence equivalence problems. Discrete Appl. Math. 41 (1993) 271–274.
A. Salomaa, Developmental models for artificial life: basics of L systems. In G. Paun (ed.) Artificial life: Grammatical Models. Black Sea University Press (1995) 22–32.
A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series. Springer-Verlag, Berlin (1978).
K. Salomaa, D. Wood and S. Yu, Complexity of E0L structural equivalence. Lecture Notes in Computer Science. 841 Springer-Verlag, Berlin (1994) 587–596.
K. Salomaa and S. Yu, Decidability of structural equivalence of E0L grammars. Theoret. Comput. Sci. 82 (1991) 131–139.
W. Smith, A. Schweitzer, DNA computers in vitro and in vivo. NEC Research Report, Mar.31, 1995.
M. Soittola, Remarks on D0L growth sequences. RAIRO 10 (1976) 23–34.
M. Soittola, Positive rational sequences. Theoret. Comput. Sci. 2 (1976) 317–322.
A. Szilard, Growth Functions of Lindenmayer Systems, Tech. Rep., Cornput. Sci, Dep., Univ. of Western Ontario (1971).
J. van Leeuwen, The membership question for ET0L languages is polynomially complete. Inform. Process. Lett. 3 (1975) 138–143.
P. Vitany, Structure of growth in Lindenmayer Systems. Indag. Math. 35 (1973) 247–253.
T. Yokomori, Graph-controlled systems-an extension of 0L systems. In [RSed2], 461–471.
T. Yokomori, Inductive inference of 0L languages. In [RSed3], 115–132.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kari, L., Rozenberg, G., Salomaa, A. (1997). L Systems. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59136-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-59136-5_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-63863-3
Online ISBN: 978-3-642-59136-5
eBook Packages: Springer Book Archive