Skip to main content

Numerical Methods, Simulations and Visualization for Compressible Flows

  • Chapter
Visualization and Mathematics

Summary

In this paper we want to describe how we solved an industrial flow problem, the simulation in a simplified two—stroke engine. The numerical method we are using is an upwind finite volume method on an unstructured grid with arbitrary finite volumes. The grid fineness is adapted locally to a get a better resolution of important flow structures. The boundaries of the calculation domain are moving. Essential for the development for such a numerical algorithm is the graphical support to find programming errors and of course to visualize the calculated data. We will analyse the demands for the necessary graphics, which is provided by the graphical programming environment GRAPE. Furthermore we will present some of the numerical results of standard test problems in 2D and 3D to validate our numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bänsch, An Adaptive Finite-Element Strategy for the Three-dimensional Time-dependent Navier-Stokes equations, Journal of Computational and Applied Mathematics 36 (1991), 3–28.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. H. Epstein, R. D. Reitz, and D. E. Foster, Computations of a Two-Stroke Engine Cylinder and Port Scavenging Flows, SAE 910–672.

    Google Scholar 

  3. T. Gessner, Zeitabhängige Adaption für Finite Volumen Verfahren höherer Ordnung, Diplomarbeit, 1994, Bonn.

    Google Scholar 

  4. M. Gelben and M. Rumpf, Visualization of Finite Elements and Tools for Numerical Analysis, in: Advances in Scientific Visualization, F. H. Post and A. J. Hin (Eds.), Springer Lecture Series Band, Workshop Proceedings, 1993.

    Google Scholar 

  5. Sonderforschungsbereich 256, Grape Manual, University of Bonn, 1995, http://www.iam.uni-bonn.de/main.html.

    Google Scholar 

  6. R.-T. Happe, M. Rumpf, M. Wierse, and K. Poltrier, Visualizing Data from Time-Dependent Adaptive Simulations. To appear in the Proceedings of “Visualization 95”, Bremen.

    Google Scholar 

  7. D. Kröner, S. Noelle, and M. Rokyta Convergence of Higher Order Finite Volume Schemes on Unstructured Grids for Scalar Conservation Laws in Two Space Dimensions, Numerische Mathematik 71, 1995.

    Google Scholar 

  8. Y. G. Lai, A. J. Przekwas, and R. L. T. Sun, CFD Simulation of Automotive I. C. Engines with Advanced Moving Grid and Multi-Domain Methods, AIAA-93–2953.

    Google Scholar 

  9. K. Polthier and M. Rumpf, A Concept for Time-Dependent Processes, in: M. Göbel, H. Müller, and B. Urban (eds.), Visualization in Scientific Computing, Springer Verlag (1995), 137–153.

    Google Scholar 

  10. M. Rumpf, A. Schmidt, and K. G. Siebert, Functions defining arbitrary meshes, a flexible interface between numerical data and visualization routines, Report, SFB 256, Bonn, to appear in Computer Graphics Forum.

    Google Scholar 

  11. A. Wierse and M. Rumpf, GRAPE, Eine objektorientierte Visualisierungsund Numerikplattform, Informatik Forschung und Entwicklung 7 (1992), 145–151.

    Google Scholar 

  12. M. Rumpf, M. Leiben, and T. Gessner, Moving and Tracing in Time-dependent Vector Fields on Adaptive Meshes, Report 12, SFB 256.

    Google Scholar 

  13. M. Rumpf, A. Schmidt et. al., GRAPE, GRAphics Programming Environment, Report 8, SFB 256, Bonn, 1990.

    Google Scholar 

  14. J. Steger, On the Use of Composite Grid Schemes in Computational Aerodynamics, Computer Methods in Applied Mechanics and Engineering 64 (1987), 301–320.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. L. Steger and R. F. Warming, Flux Vector Splitting of the Inviscid Gasdynamit Equations with Application to Finite-Difference Methods, Journal of Computational Physics 40 (1981), 263–293.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Wierse, Solving the compressible Euler equations in time-dependent geometries, Preprint (to appear in the Proceedings of the Fifth International Conference on Hyperbolic Problems, Stony Brook, 1994)

    Google Scholar 

  17. M. Wierse, Higher Order Upwind Schemes on Unstructured Grids for the Compressible Euler Equations in Time-dependent Geometries in 3D, Dissertation, Freiburg, 1994. Preprint 393, SFB 256, Bonn.

    Google Scholar 

  18. P. R. Woodward and P. Colella, The Numerical Simulation of Two—Dimensional Flow with Strong Shocks, Journal of Computational Physics 54 (1984), 115–173.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wierse, M., Geßner, T., Kröner, D. (1997). Numerical Methods, Simulations and Visualization for Compressible Flows. In: Hege, HC., Polthier, K. (eds) Visualization and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59195-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59195-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63891-6

  • Online ISBN: 978-3-642-59195-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics