Skip to main content

Accumulation of Object Representations Utilizing Interaction of Robot Action and Perception

  • Conference paper
Mustererkennung 2000

Part of the book series: Informatik aktuell ((INFORMAT))

  • 275 Accesses

Abstract

We introduce a robotic-vision system which is able to extract object representations autonomously utilizing a tight interaction of visual perception and robotic action within a perception action cycle [9, 16]. Controlled movement of the object grasped by the robot enables us to compute the transformations of entities which are used to represent aspects of objects and to find correspondences of entities within an image sequence.

A general accumulation scheme allows to acquire robust information from imperfect and partly missing information extracted from single frames of an image sequence. Here we used this scheme with a preprocessing stage in which 3D-line segments are extracted from stereo images. However, the accumulation scheme can be used with any kind of preprocessing as long as the entities used to represent objects can be brought to correspondence by certain equivalence relations such as ‘rigid body motion’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ackermann. Akkumulieren von Objektrepräsentationen im Wahrnehmungs-Handlungs Zyklus. Christian-Albrechts Universität zu Kiel, Institut für Informatik und praktische Mathematik (Diplomarbeit)) 2000.

    Google Scholar 

  2. R.A. Brooks. Intelligence without reason. International Joint Conference on Artificial Intelligence, pages 569-595, 1991.

    Google Scholar 

  3. O.D. Faugeras, editor. Three-Dimensional Computer Vision. MIT Press, 1993. Michael Felsberg and Gerald Sommer. Structure multivector for local analysis of images. Christian Albrechts Universität Kiel, Institut für Informatik. Technical Report no. 2001, 2000.

    Google Scholar 

  4. S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma. Neural Computation, 4:1–58, 1995.

    Article  Google Scholar 

  5. J.J. Gibson. The ecological approach to visual perception. Boston, MA: Houghton Mifflin, 1979.

    Google Scholar 

  6. Marco Hahn. Semiglobale Verfahren zur Generierung von Eckpunkthypothesen in 2D und 3D. Christian-Albrechts Universität zu Kiel, Institut für Informatik und praktische Mathematik (Diplomarbeit), 1999.

    Google Scholar 

  7. B. Jahne, editor. Digitale Bildverarbeitung. Springer, 1997.

    Google Scholar 

  8. J.J Koenderink. Wechsler’s vision: An essay review of computational vision by Harry Wechsler. Ecological Psychology, 4:121–128, 1992.

    Article  Google Scholar 

  9. J.J Koenderink and A.J. van Doorn. The internal representation of solid shape with respect to vision. Biological Cybernetics, 32:211–216, 1992.

    Article  Google Scholar 

  10. N. Krüger. Visual Learning with a priori Constraints (Phd Thesis). Shaker Verlag, Germany, 1998.

    Google Scholar 

  11. A. Lanitis, C.J. Taylor, and T.F. Cootes. Automatic interpretation and coding of face images using flexible models. IEEE Transactions on Pattern Recognition and Machine Intelligence, July:743-756, 1997.

    Google Scholar 

  12. M. Pötzsch, N. Krüger, and C. von der Malsburg. A procedure for automatic analysis of images and image sequences based on two-dimensional shape primitives. U.S. Patent Application, 1999.

    Google Scholar 

  13. J.Princen, J. Illingworth, and J. Kittler. An optimizing line Ander using a hough transform algorithm. Computer Vision, Graphics, and Image Processing, 52:57–77, 1990.

    Article  Google Scholar 

  14. G. Sommer. Verhaltensbasierter Entwurf technischer visueller Systeme. Künstliche Intelligenz, 3:42–45, 1995.

    Google Scholar 

  15. G. Sommer. Algebraic aspects of designing behaviour based systems. In G. Sommer and J.J. Koenderink, editors, Algebraic Frames for the Perception and Action Cycle, pages 1-28. Springer Verlag, 1997.

    Google Scholar 

  16. G. Sommer, B. Rosenhahn, and Y. Zang. Pose estimation using geometric algebra. Dagstuhl-Seminar, to appear 2000.

    Google Scholar 

  17. Alan L. Yuille. Deformable templates for face recognition. Journal of Cognitive Neuroscience, 3(1)59–70, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krüger, N., Ackermann, M., Sommer, G. (2000). Accumulation of Object Representations Utilizing Interaction of Robot Action and Perception. In: Sommer, G., Krüger, N., Perwass, C. (eds) Mustererkennung 2000. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59802-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59802-9_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67886-1

  • Online ISBN: 978-3-642-59802-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics