Abstract
Many differential methods for the recovery of the optic flow field from an image sequence can be expressed in terms of a variational problem where the optic flow minimizes some energy. Typically, these energy functionals consist of two terms: a data term, which requires e.g. that a brightness constancy assumption holds, and a regularizer that encourages global or piecewise smoothness of the flow field. In this paper we present a systematic Classification of rotation invariant convex regularizers by exploring their connection to diffusion filters for multichannel images. This taxonomy provides a unifying framework for data-driven and flow-driven, isotropic and anisotropic, as well as spatial and spatiotemporal regularizers. While some of these techniques are classic methods from the literature, others are derived here for the first time. We conclude by pointing out some important research issues related to variational optic flow computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Alvarez, J. Esclarin, M. Lefebure and J. Sanchez, A PDE model for Computing the optical flow, Proc. XVI Congreso de Ecuaciones Diferenciales y Aplicaciones (C.E.D.Y.A. XVI, Las Palmas de Gran Canaria, Sept. 21-24, 1999), 1349-1356, 1999.
L. Alvarez, J. Weickert, J. Sanchez, Reliable estimation of dense optical flow fields with large displacements, To appear in International Journal of Computer Vision.
G. Aubert, R. Deriche, P. Kornprobst, Computing optical flow via variational techniques, SIAMJ. Appl. Math, Vol. 60, 156–182, 1999.
J.L. Barron, D.J. Fleet, S.S. Beauchemin, Performance of optical flow techniques, Int. J. Comput. Vision, Vol. 12, 43–77, 1994.
M.J. Black, P. Anandan, The robust estimation of multiple motions: Parametric and piecewise smooth flow fields,Computer Vision and Image Understanding, Vol. 63, 75–104, 1996.
A. Blake, A. Zisserman, Visual reconstruction, MIT Press, Cambridge (Mass.), 1987.
L. Blanc-Feraud, M. Barlaud, T. Gaidon, Motion estimation involving discontinuities in a multiresolution scheme, Optical Engineering, Vol. 32, No. 7, 1475–1482, 1993.
I. Cohen, Nonlinear varia,tional method for optical flow computation, Proc. Eighth Scandinavian Conf. on Image Analysis (SCIA ’93, Troms0, May 25-28, 1993), Vol. 1, 523-530, 1993.
R.Deriche, P. Kornprobst, G. Aubert, Optical-flow estimation while preserving its discontinuities: A variational approach, Proc. Second Asian Conf. Computer Vision (ACCV ’95, Singapore, December 5-8, 1995), Vol. 2, 290–295, 1995.
S. Di Zenzo, A note on the gradient of a multi-image, Computer Vision, Graphics, and Image Processing, Vol. 33, 116–125, 1986.
D.J. Fleet, A.D. Jepson, Computation of component image velocity from local phase information, Int. J. Comput. Vision, Vol. 5, 77–104, 1990.
W. Förstner, E. Gülch, A fast operator for detection and precise location of distinct points, corners and centres of circular features, Proc. ISPRS Intercommission Conf. on Fast Processing of Photogrammetric Data (Interlaken, June 2-4, 1987), 281-305, 1987.
M.X. Goemans, D.P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, Vol. 42:1115–1145, 1995.
B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever (Eds.), Scale-space theory in Computer vision, Lecture Notes in Computer Science, Vol. 1252, Springer, Berlin, 1997.
W. Hackbusch, editor. Multigrid Methods V: Proc. Fifth European Multigrid Conference, Stuttgart, Oct. 1-4 1998. Springer.
F. Heitz, P. Bouthemy, Multimodal estimation of discontinuous optical flow using Markov random fields, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 15, 1217–1232, 1993.
W. Hinterberger, Generierung eines Films zwischen zwei Bildern mit Hilfe des optischen Flusses, M.Sc. thesis, Industrial Mathematics Institute, University of Linz, Austria, 1999.
B. Horn, B. Schunck, Determining optical flow, Artificial Intelligence, Vol. 17, 185— 203, 1981.
E. Kreyszig, Differential geometry, University of Toronto Press, Toronto, 1959.
A. Kumar, A.R. Tannenbaum, G.J. Balas, Optic flow: a curve evolution approach, IEEE Trans. Image Proc., Vol. 5, 598–610, 1996.
P.J.M. van Laarhoven, E.H.L. Aarts, Simulated annealing: theory and applications, Reidel, Dordrecht, 1988.
L. Loväsz, A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAMJ. Optimization, Vol. 1, No. 2:166–190, 1991.
E. Memin, P. Perez, Dense estimation and object-based segmentation of the optical flow with robust techniques,IEEE Trans. Image Proc, Vol. 7, 703–719, 1998.
A. Mitiche, P. Bouthemy, Computation and analysis of image motion: a synopsis of current problems and methods,Int. J. Comput. Vision, Vol. 19, 29–55, 1996.
D.W. Murray, B.F. Buxton, Scene segmentation from visual motion using global optimization, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 9, 220–228, 1987.
H.-H. Nagel, Constraints for the estimation of displacement vector fields from image sequences, Proc. Eighth Int. Joint Conf. on Artificial Intelligence (IJCAI ’83, Karlsruhe, August 8-12, 1983), 945-951, 1983.
H.-H. Nagel, Extending the ’oriented smoothness constraint’ into the temporal domain and the estimation of derivatives of optical flow, O. Faugeras (Ed.), Computer vision - ECCV ’90, Lecture Notes in Computer Science, Vol. 427, Springer, Berlin, 139-148, 1990.
H.-H. Nagel, W. Enkelmann, An investigation of smoothness constraints for the estimation of displacement vector fields from images sequences,IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, 565–593, 1986.
P. Nesi, Variational approach to optical flow estimation managing discontinuities, Image and Vision Computing, Vol. 11, 419–439, 1993.
M. Nielsen, P. Johansen, O.F. Olsen, J. Weickert (Eds.), Scale-space theories in Computer vision, Lecture Notes in Computer Science, Springer, Berlin, Vol. 1682, 1999.
M. Proesmans, L. Van Gool, E. Pauwels, A. Oosterlinck, Determination of optical flow and its discontinuities using non-linear diffusion, J.-O. Eklundh (Ed.), Computer vision - ECCV ’94, Lecture Notes in Computer Science, Vol. 801, Springer, Berlin, 295-304, 1994.
C. Schnörr, Determming optical flow for irregulär domams by minimizing quadratic functionals of a certain class, Int. J. Comput. Vision, Vol. 6, 25–38, 1991.
C. Schnörr, On functionals with greyvalue-controlled smoothness terms for determming optical flow, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 15, 1074–1079, 1993.
C. Schnörr, Segmentation of Visual motion by minimizing convex non-quadratic functionals, Proc. 12th Int. Conf. Pattern Recognition (ICPR 12, Jerusalem, Oct. 9-13, 1994), Vol. A, IEEE Computer Society Press, Los Alamitos, 661-663, 1994.
C. Schnörr, R. Sprengel, B. Neumann, A variational approach to the design of early vision algorithms,Computing, Suppl. 11, 149–165, 1996.
E.P. Simoncelli. Bayesian multiscale differential optical flow. In B. Jähne, H. Haußecker, and P. Geißler, editors, Handbook: of Computer Vision and Applications, volume 2, chapter 14, pages 297–422. Academic Press, San Diego, 1999.
M.A. Snyder, On the mathernatical foundations of smoothness constraints for the determination of optical flow arid for surface reconstruction, IEEE Trans. Pattern Anal. Mach. Intell, Vol. 13, 1105–1114, 1991.
J. Sporring, M. Nielsen, L. Florack, P. Johansen (Eds.), Gaussian scale-space theory, Kluwer, Dordrecht, 1997.
C. Stiller, J. Konrad, Estimating motion in image sequences,IEEE Signal Proc. Magazine, Vol. 16, 70–91, 1999.
J. Weber, J. Malik, Robust computation of optical flow in a multi-scale differential framework, Int. J. Comput. Vision, Vol. 14, 67–81, 1995.
J. Weickert, Anisotropie diffusion in image processing, Teubner, Stuttgart, 1998.
J. Weickert, On discontmuity-preserving optic flow, S. Orphanoudakis, P. TYahanias, J. Crowley, N. Katevas (Eds.), Proc. Computer Vision and Mobile Robotics Workshop (CVMR ’98, Santorini, Sept. 17-18, 1998), 115-122, 1998.
J. Weickert, Coherence-enhancing diffusion of colour images,Image and Vision Computing, Vol. 17, 199-210 , 1999.
J . Weickert , B. ter Haar Romeny, M.A. Viergever. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE T .-Image Proc., Vol. 7, No. 3:398–410, 1998.
J . Weickert, C. Schnorr, Riiumlich- zeitliche Berechnung des optischen Fluss es mit ni chtl in earen fluftabhiingig en GlattheitsteTmen , W. Forstner , J .M. Buhmann, A. Fab er , P. Fab er (Eds .), Mustcrerkennung 1999, Springer, Berlin, 317–324, 1999.
J . Weickert, .1 . Heers , C. Schnorr , K.-.1 . Zuiderveld , O. Scherzer. and H.-S. Stiehl. Fast parallel algorithms for a broad class of nonlinear variational diffusion ap proaches. Real-Time Imaging , 2000. In press.
J . Weickert, C. Schnorr. A th eoret ical framework for convex regu larizers in PD Ebased computation of image motion . Computer Science Series 13/2000, Dept. Math. and CompoScience, University of Mannheim, Germany, J une 2000. Submitted.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schnörr, C., Weickert, J. (2000). Variational Image Motion Computation: Theoretical Framework, Problems and Perspectives. In: Sommer, G., Krüger, N., Perwass, C. (eds) Mustererkennung 2000. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59802-9_60
Download citation
DOI: https://doi.org/10.1007/978-3-642-59802-9_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67886-1
Online ISBN: 978-3-642-59802-9
eBook Packages: Springer Book Archive