Abstract
Computing the class group and regulator of an algebraic number field K are two major tasks of algorithmic algebraic number theory. The asymptotically fastest method known has conjectured sub-exponential running time and was proposed in [5]. In this paper we show how sieving methods developed for factoring algorithms can be used to speed up this algorithm in practice. We present numerical experiments which demonstrate the efficiency of our new strategy. For example, we are able to compute the class group of an imaginary quadratic field with a discriminant of 55 digits 20 times as fast as S. Düllmann in an earlier record-setting implementation ([1]) which did not use sieving techniques. We also present class numbers of large cubic fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J.Buchmannand S. Dü. Distributed class group computation. In J.Buchmann, H.Ganzinger, and W.J.Paul, editors, Informatik - Festschrift aus Anlaft des sechzigsten Geburtstages von Herro Prof. Dr. G. Hotz, volume 1 of Teubner-Texte zur Informatik,pages 68–81. B. G. Teubner, 1991.
J. Buchmann and S. Dü. A probabilistic class group and regulator algorithm and its implementation.InComputational number theory, Proc. Colloq.,Debrecen/Hung. 1989, pages 53–72, 1991.
J.P. Buhler, H.W. Lenstra, Jr., and C. Pomerance. Factoring integers with the number field sieve. In A.K. Lenstra and H.W. Lenstra, Jr., editors, The development of the number field sieve,number 1554 in Lecture Notes in Mathematics, pages 50–94. Springer, 1993.
J.Buchmann, S.Neis, and D.Weber. Computing class groups with the NFS. To appear.
J. Buchmann. A sub exponential algorithm for the determination of class groups and regulators of algebraic number fields. In Séminaire de Théorie des Nombres ,pages 27–41, Paris, 1988-89.
H. Cohen, F. Diaz y Diaz, and M. Olivier. Calculs de nombres de classes et de regulateurs de corps quadratiques en temps sous-exponentiel. In Séminaire de Théorie des Nombres , pages 35–46, Paris, 1993.
H. Cohen. A course in computational algebraic number theory . Springer, Heidelberg, 1995.
P. D. Domich, R. Kannan, and L.E. Trotter Jr.Hermite normal form computation using modular determinant arithmetic.Mathematics of Operations Research,12,1987.
G. Havas, D. F. Holt, and S. Rees. Recognizing badly presented 7Z-modules.Linear Algebra and its Applications,192, 1993.
J.L. Hafner and K.S. McCurley. Asymptotically fast triangularization of matrices over rings. SIAM J. Comput,20:1068–1083, 1991.
G. Havas and B. S. Majewski.Hermite normal form computation for integer matrices. Technical Report TR0295, Key Centre for Software Technology, Department of Computer Science, The University of Queensland, 1994.
G. Havas and B. S. Majewski. Integer matrix diagonalization. Technical Report TR0277, Key Centre for Software Technology, Department of Computer Science, The University of Queensland, 1994.
M.J. Jacobson, Jr. Applying sieving to the computation of quadratic class groups. to appear in Math. Comp., 1997.
M. Pohst and H. Zassenhaus. Algorithmic Algebraic Number TheoryCUP, 1989.
R. D. Silverman. The multiple polynomial quadratic sieve. Math. Comp,48:757– 780,1987.
H.-J. Stender. Lösbare Gleichungen axn - byn = c und Grundeinheiten för einige algebraische Zahlkoörper vom Grade n = 3,4,6. J. reine angew. Math,290:24–62,1977.
D. Weber. On the computation of discrete logarithms in finite prime fields PhD thesis, Universität des Saarlandes, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buchmann, J., Jacobson, M.J., Neis, S., Theobald, P., Weber, D. (1999). Sieving Methods for Class Group Computation. In: Matzat, B.H., Greuel, GM., Hiss, G. (eds) Algorithmic Algebra and Number Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59932-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-59932-3_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64670-9
Online ISBN: 978-3-642-59932-3
eBook Packages: Springer Book Archive