Skip to main content

Segmentierung des Lungenparenchyms in posterior—anterioren Thoraxradiographien mit einem lokal—adaptiven Kantendetektor

  • Conference paper
Bildverarbeitung für die Medizin 1999

Part of the book series: Informatik aktuell ((INFORMAT))

  • 107 Accesses

Zusammenfassung

Mit der zunehmenden Digitalisierung der Thoraxradiographie wird ein robuster, für die klinische Routine geeigneter Algorithmus zur Segmentierung des Lungenparenchyms notwendig. Der hier vorgestellte Algorithmus stellt ein semi-automatisches Verfahren dar, bei dem durch einen lokal-adaptiven Kantendetektor das Lungenparenchym segmentiert wird. Durch iterative Schätzung des Kantenverlaufs wird eine richtungsabhängige Skalierung und Gradientenbildung erreicht. Die Parametrisierung der Kurvenkrümmung erlaubt eine Anpassung an das zu segmentierende Objekt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Xu XW, Doi K: Image feature analysis for computer-aided diagnosis: detection of right and left hemidiaphragm edges and delineation of lung field in chest radiographs. Med. Phys., 23(9): 1613–1624, 1996.

    Article  Google Scholar 

  2. Difazio MC, MacMahon H, Xu XW, Tsai P, Shiraishi J, Armato SG III, Doi K: Digital chest radiography: Effect of temporal subrtraction images on detection accuracy. Radiology, 202:447–452, 1997.

    Google Scholar 

  3. Tsujii O, Freedman MT, Mun SK: Anatomic region-based dynamic range compression for chest radiographs using warping transformation of correlated distribution. IEEE Trans, on Medical Imaging, 17(3):407–418, 1998.

    Article  Google Scholar 

  4. McNitt-Gray MF, Sayre JW, Huang HK, Razavi M: A pattern classification approach to segmentation of chest radiographs. SPIE, 1898:160–170, 1993.

    Article  Google Scholar 

  5. Hasegawa A, Lo SC, Freedman MT, Mun SK: Convolution neural network-based detection of lung structure. SPIE, 2167:654–662, 1994.

    Article  Google Scholar 

  6. Yue Z, Goshtasby A, Ackerman LV: Automatic detection of rib borders in chest radiographs. IEEE Trans, on Medical Imaging, 14:525–536, 1995.

    Article  Google Scholar 

  7. Armato SG III, Giger ML, MacMahon H: Computerized detection of abnormal asymmetry in digital chest radiographs. Med. Phys., 21(11): 1761–1768, 1994.

    Article  Google Scholar 

  8. Duryea J, Boone JM: A fully automated algorithm for the segmentation of lung fields on digital chest radiographic images. Med. Phys., 22(2): 183–191, 1995.

    Article  Google Scholar 

  9. Xu XW, Doi K: Image feature analysis for computer-aided diagnosis: accurate determination of ribcage boundary in chest radiographs. Med. Phys., 22(5):617–626, 1995.

    Article  Google Scholar 

  10. Evertsz CJG, Berkner K, Berghorn W: A local multiscale characterization of edges applying the wavelet transform. In: Y. Fisher (Ed.), NATO ASI Series, Series F: Computer and System Science, vol. 159. Springer Berlin Heidelberg, pp. 261–277, 1998.

    Google Scholar 

  11. Canny J: A computational approach to edge detection. IEEE Trans. Patt. Anal. Mach. Intell., 8(6):679–697, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krass, S., Peitgen, HO. (1999). Segmentierung des Lungenparenchyms in posterior—anterioren Thoraxradiographien mit einem lokal—adaptiven Kantendetektor. In: Evers, H., Glombitza, G., Meinzer, HP., Lehmann, T. (eds) Bildverarbeitung für die Medizin 1999. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60125-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60125-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65627-2

  • Online ISBN: 978-3-642-60125-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics