Abstract
The behavior of nonlinear analog circuits is described by a set of differential algebraic equations (DAE). In this paper we present a symbolic simplification algorithm for such DAE systems which generates an approximative system. Besides the mathematical background we explain several local and global simplification techniques that axe applied to the system. Each modification step is controlled by an error calculation. To achieve a maximum number of simplifications and to avoid unnecessary modifications an optimized order, the so called ranking, is needed. We will present two different ranking methods and will show the results on an example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Analog Insydes Homepage, http://www.itwm.uni-kl.de/as/products/ai/.
C. Borchers. The symbolic behavioral model generation of nonlinear analog circuits. In IEEE Transactions on Circuits and Systems, volume 45, pages 1362–1371, Oct. 1998.
C. Borchers, R. Sommer, and E. Hennig. On the symbolic calculation of non-linear circuits. In Proc. IEEE Int. Symposium on Circuits and Systems, 1996.
F. V. Fernández, A. Rodrí guez Vázquez, J. L. Huertas, and G. Gielen. Symbolic Analysis Techniques - Applications to Analog Design Automation. IEEE Press, New York (USA), 1998.
G. Gielen and W. Sansen. Symbolic Analysis for Automated Design of Analog Integrated Circuits. Kluwer Academic Publishers, Boston (USA), 1991.
E. Hennig and T. Halfmann. Analog Insydes Tutorial. ITWM, Kaiserslautern, 1998.
A. S. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell Publishing Co., New York, 1964.
IMS: Research and Contact. http://www.ims.uni-hannover.de/ims.public.eng/research/analog.html.
G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. McGraw-Hill, Inc., second edition, 1993.
R. Popp, W. Hartong, L. Hedrich, and E. Barke. Error estimation on symbolic behavioral models of nonlinear analog circuits. In Proc. Fifth International Workshop on Symbolic Methods and Applications in Circuit Design (SMACD’98), Kaiserslautern, 1998.
R. Sommer, E. Hennig, G. Dröge, and E. H. Horneber. Equation-based symbolic approximation by matrix reduction with quantitative error prediction. Alta Frequenza Rivista di Elektronica, 1(6):29–37, Dec. 1993.
A. Vladimirescu, K. Zhang, A. R. Newton, D. O. Pederson, and A. Sangiovanni-Vincentelli. SPICE Version 2G User’s Guide. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, August 1981.
S. Wolfram. The Mathematica Book. Wolfram Media/Cambridge University Press, 3rd edition, 1996.
G. Zielke. Inversion of modified symmetric matrices. J. Assoc. Computing Machinery, 15(3):402–408, July 1968.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wichmann, T., Popp, R., Hartong, W., Hedrich, L. (1999). On the Simplification of Nonlinear DAE Systems in Analog Circuit Design. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing CASC’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60218-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-60218-4_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66047-7
Online ISBN: 978-3-642-60218-4
eBook Packages: Springer Book Archive