Abstract
In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images w.r.t. intraoperative changes like brain shift or tumor resection. For the simulation of deformations of anatomical structures with different material properties, all existing biomechanical models use either appropriate boundary conditions or spatially varying material parameter values while assuming the same physical model for all anatomical structures. In this contribution, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic, and fluid structures by using the appropriate physical description for each material, namely the Navier equation and the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method. Thereafter, the linear matrix systems are linked to one common linear matrix system. Our approach has been tested using synthetic as well as tomographic images. It turns out that the integrated treatment of rigid, elastic, and fluid structures significantly improves the predicted deformation results in comparison to a pure linear elastic model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D. L. G. Hill, C. R. Maurer, R. J. Maciunas, J. A. Barwise, J. M. Fitzpatrick, and M. Y. Wang. Measurement of Intraoperative Brain Surface Deformation under a Craniotomy. Neurosurgery, 43 (3): 514–526, September 1998.
R. D. Bucholz, D. D. Yeh, J. Trobaugh, L. L. McDurmont, C. Sturm, C. Baumann, J. M. Henderson, A. Levy, and P. Kessman. The Correction of Stereotactic Inaccuracy Caused by Brain Shift Using an Intraoperative Ultrasound Device. In J. Troccaz, E. Grimson, and R. Mosges, editors, Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery (CVRMed-MRCAS’97) volume 1205 of Lecture Notes in Computer Science, pages 459–466, Grenoble, Prance, 1997. Springer Verlag.
P. J. Edwards, D. L. G. Hill, J. A. Little, and D. J. Hawkes. A three-component deformation model for image-guided surgery. Medical Image Analysis, 2 (4): 355–367, 1998.
O. Škrinjar, D. Spencer, and J. Duncan. Brain Shift Modeling for Use in Neurosurgery. In W. M. Wells, A. Colchester, and S. Delp, editors, Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), number 1496 in Lecture Notes in Computer Science, pages 641–648. Springer Verlag, October 1998.
A. Hagemann, K. Rohr, H. S. Stiehl, U. Spetzger, and J. M. Gilsbach. Nonrigid matching of tomographic images based on a biomechanical model of the human head. In K. Hanson, editor, Medical Imaging 1999 - Image Processing (MI’99), Proceedings of the SPIE International Symposium, pages 583–592, San Diego, USA, February 1999.
C. Davatzikos. Nonlinear Registration of Brain Images Using Deformable Models. In M. E. Kavanaugh, editor, Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pages 94–103, San Francisco, USA, June 1996.
S. K. Kyriacou and C. Davatzikos. A Biomechanical Model of Soft Tissue Deformation, with Applications to Non-rigid Registration of Brain Images with Tumor Pathology. In W. M. Wells, A. Colchester, and S. Delp, editors, Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), number 1496 in Lecture Notes in Computer Science, pages 531–538. Springer Verlag, October 1998.
H. Lester, S. R. Arridge, and K. M. Jansons. Local deformation metrics and nonlinear registration using a fluid model with variable viscosity. In E. Berry, D. Hogg, K. V. Mardia, and M. A. Smith, editors, Proceedings of the Medical Image Understanding and Analysis (MIUA’98) Conference, Leeds, UK, pages 44–48. University of Leeds, July 1998.
K. B. Sahay, R. Mehrotra, U. Sachdeva, and A. K. Banerji. Elastomechanical characterization of brain tissues. Journal of Biomechanics, 25 (3): 319–326, March 1992.
Y. Tada, T. Nagashima, and M. Takada. Biomechanics of brain tissue (simulation of cerebrospinal fluid flow). JSME International Journal, Series A (Mechanics and Material Engineering), 37 (2): 188–194, April 1994.
G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 5 (10): 1435–1447, October 1996.
Y. C. Fung. A First Course In Continuum Mechanics. Prentice-Hall, 1994.
H. Kardestuncer and D. H. Norrie. Finite Element Handbook. McGraw-Hill Company, 1987.
C. Cuvelier, A. Segal, and A. A. van Steenhoven. Finite Element Methods and Navier-Stokes Equations. D. Reidel Publishing Company, 1986.
W. Peckar, C. Schnörr, K. Rohr, and H. S. Stiehl. Two-Step Parameter-Free Elastic Image Registration with Prescribed Point Displacements. 9th Int. Conf. on Image Analysis and Processing (ICIAP’97), 1310: 527–534, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hagemann, A., Rohr, K., Stiehl, H.S., Spetzger, U., Gilsbach, J.M. (1999). Intraoperative Image Correction Using a Biomechanical Model of the Human Head with Different Material Properties. In: Förstner, W., Buhmann, J.M., Faber, A., Faber, P. (eds) Mustererkennung 1999. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60243-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-60243-6_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66381-2
Online ISBN: 978-3-642-60243-6
eBook Packages: Springer Book Archive