Skip to main content

Geometrical and Physical Reasoning for Stable Assembly Sequence Planning

  • Chapter
Geometric Modeling: Theory and Practice

Part of the book series: Focus on Computer Graphics ((FOCUS COMPUTER))

  • 220 Accesses

Abstract

We present a planning system generating sequences for the automated assembly of mechanical products by robots. Several physical and geometrical constraints have to be taken into account to compute efficient, robust and powerful assembly plans. Our assembly planning system automatically considers physical and geometrical constraints to generate stable robot assembly sequences. We propose a relational assembly model including a CAD description, the specification of features and symbolic spatial relations between the assembly components. The solid modeling system of a commercial robotics simulation system allows the user to define features of the assembly components and to specify symbolic spatial relationships. We developed an extended cycle finder which reduces the degrees of freedom defined by the symbolic spatial relationships and increases the efficiency of the assembly planning system. We use an optional specification of an arbitrary hierarchy of assemblies to speed up and guide the generation of sequences. Another important constraint is the stability of the generated (sub)assemblies. The presented system is the first assembly planning system which automatically determines the range of all stable orientations of an assembly for assembly plan generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. P. Ambler and R. J. Popplestone. Inferring the Positions of Bodies from Specified Spatial Relationships. Artificial Intelligence, 6:157–174, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enu¬meration of arrangements and polyhedra. Discrete and Computational Geometry, 8:295–313, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bourjault. Methodology of assembly automation: A new approach, pages 37–45. International Society for Productivity Enhancement, Springer-Verlag, July 1987.

    Google Scholar 

  4. M. Boyer and N. F. Stewart. Imperfect tolerancing on manifold objects: a metric approach. International Journal of Robotics Research, ll(5):482–490, 1992.

    Google Scholar 

  5. CPLEX Optimization, Inc. Using the CPLEX Callable Library, 1994.

    Google Scholar 

  6. T. L. De Fazio and D. E. Whitney. Simplified Generation of All Mechanical As¬sembly Sequences. IEEE Journal of Robotics and Automation, RA-3(6):640–658, December 1987.

    Google Scholar 

  7. L. Hörnern de Mello. Task Sequence Planning for Robotic Assembly. PhD thesis, Carnegie Mellon University, May 1989.

    Google Scholar 

  8. L. S. Hörnern de Mello and S. Lee, editors. Computer-Aided Mechanical Assembly Planning. Kluwer Academic Publishers, 1991.

    Book  Google Scholar 

  9. H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, Massachusets, 1983.

    Google Scholar 

  10. R. Gould. Graph theory. Benjamin/Cummings Publishing, 1988.

    Google Scholar 

  11. R. Gutsche, F. Röhrdanz, and F. M. Wahl. Assembly Planning Using Symbolic Spatial Relationships. In W. Strasser and F. M. Wahl, editors, Graphics And Robotics. Springer-Verlag, 1994.

    Google Scholar 

  12. R. Hoffman. Automated assembly planning for b-rep products. IEEE International Conference on Systems Engineering, pages 391–394, 1990.

    Google Scholar 

  13. R. Hoffman. Computer-Aided Mechanical Assembly Planning, chapter A common sense approach to assembly sequence planning. Kluwer Academic Publishers, 1991.

    Google Scholar 

  14. L. S. Hörnern de Mello and A. C. Sanderson. AND/OR-Graph Representation of Assembly Plans. IEEE Trans. Robotics and Automation, 6(2): 188–199, April 1990.

    Article  Google Scholar 

  15. R. E. Jones and R. H. Wilson. A survey of constraints in automated assem¬bly planning. IEEE International Conference on Robotics and Automation, pages 1525–1532, 1996.

    Google Scholar 

  16. S. G. Kaufman, R. H. Wilson, R. E. Jones, and T. L. Calton. The archimedes 2 mechanical assembly planning system. IEEE International Conference on Robotics and Automation, pages 3361–3368, 1996.

    Google Scholar 

  17. L. Kavraki and M. Kolountzakis. Partitioning a planar assembly into two connected parts is np-complete. Information Processing Letters, 55:159–165, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Kavraki, J. C.Latombe, and R. W. Wilson. On the complexity of assembly partitioning. Information Processing Letters, 48:229–235, 1993.

    Article  MATH  Google Scholar 

  19. S. Lee and Y. G. Shin. Assembly Planning based on Geometric Reasoning. Computers and Graphics, 14(2):237–250, 1990.

    Article  Google Scholar 

  20. S. Lee and Y. G. Shin. Assembly Planning based on Subassembly Extraction. In Proc. IEEE International Conf. on Robotics and Automation, pages 1601–1611, May 1990.

    Google Scholar 

  21. A. C. Lin and Y. G. Shin. 3d maps: Three-dimensional mechanical assembly planning system. Journal of Manufacturing Systems, 12(6):437–456, 1993.

    Article  Google Scholar 

  22. T. Lozano-Pérez. Spatial Planning: A Configuration Space Approach. IEEE Trans. Computers, C-32(2):26–38, February 1983.

    Google Scholar 

  23. R. Mattikalli, D. Baraff, P. Khosla, and B. Repetto. Finding All Stable Orientations of Assemblies with Friction. IEEE Trans. Robotics and Automation, 12(2):290–301, 1996.

    Article  Google Scholar 

  24. J. M. Miller and R. L. Hoffman. Automatic assembly planning with fasteners. IEEE International Conference on Robotics and Automation, 1:69–74, 1989.

    Google Scholar 

  25. K. Murty. Linear Programming. Wiley, 1983.

    Google Scholar 

  26. R. S. Palmer. Computational Complexity of Motion and Stability of Polygons. PhD thesis, Cornell University, January 1987.

    Google Scholar 

  27. C. Pelich, H. Mosemann, and F. M. Wahl. A Powerful, Flexible and Process-Modular Robot Control Environment. In “IASTED International Conference Robotics and Manufacturing”, August 1996.

    Google Scholar 

  28. J. Pertin-Troccaz. Grasping: A State of the Art, chapter Programming, Planning, and Learning, pages 71–98. The Robotics Review. MIT Press, 1989.

    Google Scholar 

  29. R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a sequence of translations. Discrete and Computational Geometry, 3(2):123–136, 1988.

    MathSciNet  MATH  Google Scholar 

  30. R. J. Popplestone. Specifying manipulation in terms of spatial relationships. Tech¬nical Report 117, Department of Artificial Intelligence, University of Edinburgh, 1979.

    Google Scholar 

  31. F. Röhrdanz, R. Gutsche, and F. M. Wahl. Assembly Planning and Geometric Reasoning for Grasping. In I. Plander, editor, Sixth Int. Conference on Artificial Intelligence and Information-Control Systems of Robots, pages 93–106. World Scientific, September 1994.

    Google Scholar 

  32. F. Röhrdanz, H. Mosemann, and F. M. Wahl. Highlap: A high level system for gen¬erating, representing, and evaluating assembly sequences. In IEEE International Joint Symposia on Intelligence and Systems, November 1996.

    Google Scholar 

  33. F. Röhrdanz, H. Mosemann, and F. M. Wahl. Stability Analysis of Assemblies Con¬sidering Friction. Technical Report 5–1996–1, Institute of Robotics and Computer Control, Braunschweig, Germany, May 1996.

    Google Scholar 

  34. F. Röhrdanz and F. M. Wahl. Incremental Free Space Acquisition and Repre¬sentation for Automatic Grasping. In International Conference on Automation, Robotics and Computer Vision, Singapore, December 1996.

    Google Scholar 

  35. B. Romney, C. Godard, M. Goldwasser, and G. Ramkumar. An efficient system for geometric assembly sequence generation and evaluation. ASME International Computers in Engineering Conference, pages 699–712, 1995.

    Google Scholar 

  36. K. B. Shimoga. Robot Grasp Synthesis Algorithms: A Survey. International Journal of Robotics Research, 15(3):230–266, June 1996.

    Article  Google Scholar 

  37. C. K. Shin, D. S. Hong, and H. S. Cho. Disassemblability Analysis for Generating Robotic Assembly Sequences. Proc. IEEE International Conf. on Robotics and Automation, 2:1284–1289, May 1995.

    Google Scholar 

  38. User Manual and Tutorials, IGRIP Version 3.0. Deneb Robotics, 3285 Lapeer Road West, P.O. Box 214687, Auburn Hills, MI 48321–4687, 1994.

    Google Scholar 

  39. J. U. Turner, S. Subramaniam, and S. Gupta. Constraint representation and reduc¬tion in assembly modeling and analysis. IEEE Journal of Robotics and Automation, 8(6):741–750, 1992.

    Article  Google Scholar 

  40. J. M. Val ade. Geometric reasoning and automatic synthesis of assembly trajectory. International Conference on Advanced Robotics, pages 43–50, 1985.

    Google Scholar 

  41. J. Wolter. On the Automatic Generation of Assembly Plans. In Proc. IEEE International Conf. on Robotics and Automation, pages 62–68, 1989.

    Google Scholar 

  42. J. D. Wolter. A combinatorial analysis of enumerative data structures for assembly planning. IEEE International Conference on Robotics and Automation, pages 611–618, 1991.

    Google Scholar 

  43. J. D. Wolter and J. C. Trinkle. Automatic selection of fixture points for frictionless assemblies. IEEE International Conference on Robotics and Automation, pages 528–534, 1994.

    Google Scholar 

  44. T. C. Woo and D. Dutta. Automatic disassembly and total ordering in three dimensions. Transactions of the ASME, 113(2):207–213, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Röhrdanz, F., Mosemann, H., Wahl, F.M. (1997). Geometrical and Physical Reasoning for Stable Assembly Sequence Planning. In: Strasser, W., Klein, R., Rau, R. (eds) Geometric Modeling: Theory and Practice. Focus on Computer Graphics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60607-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60607-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61883-6

  • Online ISBN: 978-3-642-60607-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics