Abstract
The complexity of probabilistic reasoning prohibits its application on a large scale of data. In order to reduce the complexity, implementations of modeling approaches restrict themselves with respect to expressive power or relax on the underlying probability theory.
We present the implementation aspects of a probabilistic extension of stratified Data-log. This probabilistic deductive system is strictly based on the well-founded ground of probability theory. The prototypical implementation of the system handles the expensive computation of the probabilities separately from the reasoning process itself. Thus, we can use standard optimization strategies known from deterministic systems in order to cope with large amounts of data.
By adding probabilistic reasoning to a deductive database system we gain the possibility of describing the information retrieval task as computing the probability P(d→ q), i. e. the probability of the inference between a document d and a query q. Therefore, the logical view on databases plus a probabilistic generalization of the data model is a promising candidate for a breakthrough in integrating database and information retrieval technology on the way to multimedia information systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barbara,D.;Garcia-Molina,H.;Porter,D. (1992). The Management of Probabilistic Data.IEEE Transactions on Knowledge and Data Engineering4(5), pages 487–502.
Callan,J.;Croft,W.;Harding,S. (1992). The INQUERY Retrieval System. In:Proceedings of the 3rd International Conference on Database and Expert Systems Applications, pages 78–83.
Fagin,R.;Halpern,J. (1994). Reasoning About Knowledge and Probability.Journal of the ACM41(2), pages 340–367.
Fuhr,N.;Rölleke,T. (1996). A Probabilistic Relational Algebra for the Integration of Information Retrieval and Database Systems. (To appear in: ACM Transactions on Information Systems).
Fuhr,N. (1995). Probabilistic Datalog - a Logic for Powerful Retrieval Methods. In: Fox, E.; Ingwersen, P.; Fidel, R. (eds.):Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 282–290. ACM, New York.
Güntzer,U.;Kießling,W.;Thöne,H. (1991). New Directions for Uncertainty Reasoning in Deductive Databases. In: Clifford, J.; King, R. (eds.):Proceedings of the ACM SIGMOD International Conference on the Management of Data, pages 178–187. ACM, New York.
Halpern,J. Y. (1990). An Analysis of First-Order Logics of Probability.Artificial Intelligence 46, pages 311–350.
Kießling,W.;Köstler,G.;Güntzer,U. (1993). Fixpoint Evaluation with Subsumption for Probabilistic Uncertainty. In: Stucky, W.; Oberweis, A. (eds.):Datenbanksysteme in Büro, Technik und Wissenschaft, pages 316–333. Springer, Berlin et al.
Ng,R.;Subrahmanian,V. S.(1993). A Semantical Framework for Supporting Subjective and Conditional Probabilities in Deductive Databases.Journal of Automated Reasoning 10, pages 191–235.
Ng,R.;Subrahmanian,V. S.(1994). Stable Semantics for Probabilistic Deductive Databases.Information and Computation 110, pages 42–83.
Nilsson,N. J. (1986). Probabilistic Logic.Artificial Intelligence 28, pages 71–87.
Pearl,J. (1988).Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman, San Mateo, Cal.
Poole,D. (1993a). Logic Programming, Abduction and Probability.New Generation Computing11(3), pages 377–400.
Poole,D. (1993b). Probabilistic Horn abduction and Bayesiam networks.Artificial Intelligence 64, pages 81–129.
van Rijsbergen,C. J. (1986). A Non-Classical Logic for Information Retrieval.The Computer Journal 29(6), pages 481–485.
Rölleke,T.;Fuhr,N. (1996). Retrieval of Complex Objects Using a Four-Valued Logic. In:Proceedings SIGIR’96. ACM, New York.
Schmidt, H.; Steger, N.; Güntzer, U.; Kiessling, W.; Azone, R.; Bayer, R. (1990). Combining Deduction by Certainty with the Power of Magic. In: Kim, W.; Nicolas, J.; Nishio, S. (eds.): Deductive and Object-Oriented Databases, pages 103–122. Elsevier Science Publishers, North-Holland.
Ullman,J. (1988).Principles of Database and Knowledge-Base Systems, volume I. Computer Science Press, Rockville (Md.).
Wong,S.;Yao,Y. (1995). On Modeling Information Retrieval with Probabilistic Inference.ACM Transactions on Information Systems 13(1), pages 38–68.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rölleke, T., Fuhr, N. (1997). Probabilistic Reasoning for Large Scale Databases. In: Dittrich, K.R., Geppert, A. (eds) Datenbanksysteme in Büro, Technik und Wissenschaft. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60730-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-60730-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62569-8
Online ISBN: 978-3-642-60730-1
eBook Packages: Springer Book Archive