Skip to main content

Probabilistic Reasoning for Large Scale Databases

  • Conference paper
Datenbanksysteme in Büro, Technik und Wissenschaft

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

The complexity of probabilistic reasoning prohibits its application on a large scale of data. In order to reduce the complexity, implementations of modeling approaches restrict themselves with respect to expressive power or relax on the underlying probability theory.

We present the implementation aspects of a probabilistic extension of stratified Data-log. This probabilistic deductive system is strictly based on the well-founded ground of probability theory. The prototypical implementation of the system handles the expensive computation of the probabilities separately from the reasoning process itself. Thus, we can use standard optimization strategies known from deterministic systems in order to cope with large amounts of data.

By adding probabilistic reasoning to a deductive database system we gain the possibility of describing the information retrieval task as computing the probability P(d→ q), i. e. the probability of the inference between a document d and a query q. Therefore, the logical view on databases plus a probabilistic generalization of the data model is a promising candidate for a breakthrough in integrating database and information retrieval technology on the way to multimedia information systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barbara,D.;Garcia-Molina,H.;Porter,D. (1992). The Management of Probabilistic Data.IEEE Transactions on Knowledge and Data Engineering4(5), pages 487–502.

    Article  Google Scholar 

  • Callan,J.;Croft,W.;Harding,S. (1992). The INQUERY Retrieval System. In:Proceedings of the 3rd International Conference on Database and Expert Systems Applications, pages 78–83.

    Google Scholar 

  • Fagin,R.;Halpern,J. (1994). Reasoning About Knowledge and Probability.Journal of the ACM41(2), pages 340–367.

    Article  MathSciNet  MATH  Google Scholar 

  • Fuhr,N.;Rölleke,T. (1996). A Probabilistic Relational Algebra for the Integration of Information Retrieval and Database Systems. (To appear in: ACM Transactions on Information Systems).

    Google Scholar 

  • Fuhr,N. (1995). Probabilistic Datalog - a Logic for Powerful Retrieval Methods. In: Fox, E.; Ingwersen, P.; Fidel, R. (eds.):Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 282–290. ACM, New York.

    Google Scholar 

  • Güntzer,U.;Kießling,W.;Thöne,H. (1991). New Directions for Uncertainty Reasoning in Deductive Databases. In: Clifford, J.; King, R. (eds.):Proceedings of the ACM SIGMOD International Conference on the Management of Data, pages 178–187. ACM, New York.

    Google Scholar 

  • Halpern,J. Y. (1990). An Analysis of First-Order Logics of Probability.Artificial Intelligence 46, pages 311–350.

    Article  MathSciNet  MATH  Google Scholar 

  • Kießling,W.;Köstler,G.;Güntzer,U. (1993). Fixpoint Evaluation with Subsumption for Probabilistic Uncertainty. In: Stucky, W.; Oberweis, A. (eds.):Datenbanksysteme in Büro, Technik und Wissenschaft, pages 316–333. Springer, Berlin et al.

    Google Scholar 

  • Ng,R.;Subrahmanian,V. S.(1993). A Semantical Framework for Supporting Subjective and Conditional Probabilities in Deductive Databases.Journal of Automated Reasoning 10, pages 191–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Ng,R.;Subrahmanian,V. S.(1994). Stable Semantics for Probabilistic Deductive Databases.Information and Computation 110, pages 42–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Nilsson,N. J. (1986). Probabilistic Logic.Artificial Intelligence 28, pages 71–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Pearl,J. (1988).Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman, San Mateo, Cal.

    Google Scholar 

  • Poole,D. (1993a). Logic Programming, Abduction and Probability.New Generation Computing11(3), pages 377–400.

    Article  MATH  Google Scholar 

  • Poole,D. (1993b). Probabilistic Horn abduction and Bayesiam networks.Artificial Intelligence 64, pages 81–129.

    Article  MATH  Google Scholar 

  • van Rijsbergen,C. J. (1986). A Non-Classical Logic for Information Retrieval.The Computer Journal 29(6), pages 481–485.

    Article  MATH  Google Scholar 

  • Rölleke,T.;Fuhr,N. (1996). Retrieval of Complex Objects Using a Four-Valued Logic. In:Proceedings SIGIR’96. ACM, New York.

    Google Scholar 

  • Schmidt, H.; Steger, N.; Güntzer, U.; Kiessling, W.; Azone, R.; Bayer, R. (1990). Combining Deduction by Certainty with the Power of Magic. In: Kim, W.; Nicolas, J.; Nishio, S. (eds.): Deductive and Object-Oriented Databases, pages 103–122. Elsevier Science Publishers, North-Holland.

    Google Scholar 

  • Ullman,J. (1988).Principles of Database and Knowledge-Base Systems, volume I. Computer Science Press, Rockville (Md.).

    Google Scholar 

  • Wong,S.;Yao,Y. (1995). On Modeling Information Retrieval with Probabilistic Inference.ACM Transactions on Information Systems 13(1), pages 38–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rölleke, T., Fuhr, N. (1997). Probabilistic Reasoning for Large Scale Databases. In: Dittrich, K.R., Geppert, A. (eds) Datenbanksysteme in Büro, Technik und Wissenschaft. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60730-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60730-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62569-8

  • Online ISBN: 978-3-642-60730-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics