Skip to main content

Extension of the Principle Axes Theory for the Determination of Affine Transformations

  • Conference paper
Mustererkennung 1997

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

The classical principle axes theory (PAT) is generalized to affine transformations with a new parametrization approach. Based on this extended theory, a fast multi-scale technique is derived for the alignment of affine objects which is at least by one magnitude more accurate than the results of the classical PAT [1]–[8]. Compared to the algorithms of Cygansky & Orr [7] and Faber & Stokeley [8] the technique is not sensitive to noise [9] or to symmetries of the objects, since the transformation is derived from a second order moment tensor. In addition, it is shown with the extension of the theory, that the application of the PAT described in [1] by Bajcsi & Kovacic results in strong rotational and scaling misalignment (with rotational errors up to 45°), which can be completely suppressed by the generalized theory based on an appropriate parametrization and optimization of a similarity criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bajcsy, S. Kovacic,”Multiresolution elastic matching,” Comput Vision Graph Im Proc, vol. 46, 1–21, 1989

    Article  Google Scholar 

  2. L.S. Hibbard, R.A. Hawkins, ”Objective image alignment for 3-D reconstruction of digital autoradiograms”, J Neurosci Methods, vol. 26, 55–74, 1988

    Article  Google Scholar 

  3. A.W. Toga, P.K Banerjee, ”Registration Revisited”, J Neurosci Methods, vol. 48, 1–13, 1993

    Article  Google Scholar 

  4. E.J. Holupka, H.M. Kooy, ”A geometric algorithm for medical image correlations,” Med Phys, vol. 19, 433–438, 1992

    Article  Google Scholar 

  5. N.M. Alpert, J.F. Bradshaw, ”The principle axes transformation: a method for image registration,” J Nucl Med, vol. 31, 1717–1722, 1990

    Google Scholar 

  6. A.P. Dhawan, L.K. Arata, A.V. Levy, J. Manta, ”Iterative principle axes registration method for analysis of MR-PET brain images,” IEEE Trans Biomed Eng, vol. 45, 1079–1087, 1995

    Article  Google Scholar 

  7. D. Cygansky, J.A. Orr, ”Application of tensor theory to object recognition and orientation determination”, IEEE Trans Pattern Anal Mach Intell, vol. 7, 662–673, 1985

    Article  Google Scholar 

  8. T.L. Faber, E.M. Stokeley, ”Orientation of 3-D structures in medical images”, IEEE Trans Pattern Anal Mach Intell, vol. 20, 626–633, 1988

    Article  Google Scholar 

  9. Y.S. Abu-Mostafa, D. Psaltis, ”Image normalization by complex moments”, IEEE Trans Pattern Anal Mach Intell, vol. 7, 46–53, 1985

    Article  Google Scholar 

  10. T. Schormann, A. Dabringhaus, K. Zilles, ”Statistics of deformations in histology and Improved Alignment with MRI,” IEEE Transactions on Medical Imaging, vol. 14, 25–35, 1995

    Article  Google Scholar 

  11. T. Schormann, M. v. Matthey, A. Dabringhaus, K. Zilles K. Zilles K, ”Alignment of 3-D brain data sets originating from MR and histology,” Bioimaging, vol. 1, 119–128, 1993; ERRATUM, Bioimaging, vol. 1, 185, 1993

    Google Scholar 

  12. T. Schormann, S. Henn, K. Zilles, ”A new approach to fast elastic alignment with applications to human brains,” Lecture Notes in Computer Science, vol. 1131, 337–342, 1996

    Article  Google Scholar 

  13. S. Geyer, A. Ledberg, A. Schleicher, S. Kinomura, T. Schormann, U. Biirgel, T. Klingberg, J. Larsson, K. Zilles, P.E. Roland, ”Two different areas within the primary cortex of man,” Nature, vol. 382, 805–807, 1996

    Article  Google Scholar 

  14. G. Fischer, Analytische Geometrie II, Braunschweig: Vieweg & Sohn, 1979

    Google Scholar 

  15. B. Jâhne, Digitale Bildverarbeitung, Berlin: Springer-Verlag, 1989

    Google Scholar 

  16. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical recipes in C, Cambridge: Cambridge U. P., 1988

    MATH  Google Scholar 

  17. A. Budó: Theoretische Mechanik, Berlin: Deutscher Verlag der Wissenschaften, 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schormann, T., Dabringhaus, A., Zilles, K. (1997). Extension of the Principle Axes Theory for the Determination of Affine Transformations. In: Paulus, E., Wahl, F.M. (eds) Mustererkennung 1997. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60893-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60893-3_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63426-3

  • Online ISBN: 978-3-642-60893-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics