Skip to main content

Semianalytische Methoden in Der Simulatiostechnik

  • Conference paper
Simulationstechnik

Part of the book series: Informatik — Fachberichte ((INFORMATIK,volume 85))

  • 266 Accesses

Zusammenfassung

Bei der digitalen Simulation kontinuierlicher Systeme kommt sowohl den Simulationssprachen als auch den numerischen Methoden eine besondere Bedeutung zu. Die Wahl einer Simulationssprache stellt eine Entscheidung dar, die massgeblich darüber bestimmt, mit welchem Aufwand ein mathematisches Modell implementiert und das zugehörige Programm verifiziert werden kann, wie lesbar das Programm ist, wie leicht Aende-rungen des Modells und des Experiments möglich sind und weiteres mehr. Moderne Simulationssprachen, wie ACSL [1], CSSL-IV [2], DARE-P [3] usw., bieten eine Vielzahl von benutzerfreundlichen Attributen, was unter anderem zu wesentlich kürzeren Programmen führt als bei Verwendung höherer Programmiersprachen wie FORTRAN, ALGOL oder PASCAL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Referenzen

  1. Advanced Continuous Simulation Language (ACSL) User Guide and Reference Manual Mitchell and Gauthier, Assoc. Concord, Mass., 1975

    Google Scholar 

  2. Continuous System Simulation Language (CSSL-IV) User Guide and Reference Manual Nilsen, Assoc.Chatsworth, California, 1976

    Google Scholar 

  3. Korn, GA, Wait, JV Digital Continuous-System Simulation Prentice-Hall, Englewood Cliffs, 1978

    Google Scholar 

  4. Ral1, LB Automatic Differentiation: Techniques and Applications Lecture Notes in Computer Science No. 120 Springer Verlag, Berlin, Heidelberg, New York, 1981

    Google Scholar 

  5. Halin, HJ “The Applicability of Taylor Series Methods in Simulation” Proceedings of the 1983 Summer Computer Simulation Conference, Vol. 2 (Supplement on State of the Art Issues in Simulation), North Holland Publishing Company, pp. 1032–1076, 1983

    Google Scholar 

  6. Knapp, H, Wanner, G “LIESE: A Program for Ordinary Differential Equations Using Lie-Series” MRC Tech. Summary Rept. No. 881 University of Wisconsin - Madison, 1968

    Google Scholar 

  7. Barton, D, Willers, IM, Zahar, RVM “Taylor Series Methods for Ordinary Differential Equations - An Evaluation” in Mathematical Software, J. Rice, Editor Academic Press, New York, pp. 369–390, 1971

    Google Scholar 

  8. Halin, HJ, Hepner, SAR “Solving Benchmark Problems with PSCSP and Other Simulation Languages” Proceedings of the 1984 Summer Computer Simulation Conference Boston, Mass., 1984

    Google Scholar 

  9. Mennig, J, Auerbach, T, Brunner, J, Halg, W, Halin, HJ “Integration of Differential Equations by Means of Lie-Series and Various Numerical Methods: Comparison of Speed and Reliability” Proceedings of the IAEA Seminar on Numerical Reactor Calculations IAEA, Vienna, Austria, pp. 157–182, 1972

    Google Scholar 

  10. Halin, HJ “Integration across Discontinuities in Ordinary Differential Equations Using Power Series” SIMULATION, pp. 46-53, 1976

    Google Scholar 

  11. Halin, HJ, Kriz, J “On the Accurate Treatment of Fixed and Variable Time Delays” Proceedings of the 1979 Summer Computer Simulation Conference Seattle, Wash., pp. 130–134, 1979

    Google Scholar 

  12. Halin, HJ “A Fast and Accurate Method for the Integration of Implicit Differential Equations and the Treatment of Algebraic Loops” accepted for publication in MATHEMATICS AND COMPUTERS IN SIMULATION

    Google Scholar 

  13. Halin, HJ, Bührer, R, Halg, W, Benz, H, Bron, B, Brundiers, H, Isacson, A, Tadian, M “The ETH-Multiprocessor Project: Parallel Simulation of Continuous Systems” SIMULATION, pp. 109–123, 1980

    Google Scholar 

  14. Bührer, RE, Brundiers, H, Benz, H, Bron, B, Friess, H, Halg, W, Halin, HJ, Isacson, A, Tadian, M “The ETH-Multiprocessor EMPRESS: A Dynamically Configurable MIMD System” IEEE Transactions on Computers, Vol. C–31, No. 11, pp. 1035–1044, 1982

    Google Scholar 

  15. Enright, WH “Studies in the Numerical Solution of Stiff Ordinary Differential Equations” Tech. Rept. 46, Dept. of Computer Science, Univ. of Toronto Toronto, 1972

    Google Scholar 

  16. Mennig, J, Auerbach, T, Halg, W “Two Point Hermite Approximations for the Solution of Linear Initial Value and Boundary Value Problems” Computer Methods in Applied Mechanics and Engineering, No. 39, pp. 199–224, 1983

    Article  MathSciNet  Google Scholar 

  17. Fatunla, SO “Numerical Integrators for Stiff and Highly Oscillatory Differential Equations” Mathematics of Computation, Vol. 34, No. 150, pp. 373–3 90, 1980

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halin, H.J. (1984). Semianalytische Methoden in Der Simulatiostechnik. In: Breitenecker, F., Kleinbert, W. (eds) Simulationstechnik. Informatik — Fachberichte, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69706-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69706-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13393-3

  • Online ISBN: 978-3-642-69706-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics