Skip to main content

Algorithmen und Datenstrukturen für die Interaktion in Dreidimensionalen Medizinischen Szenen.

  • Conference paper
GI — 16. Jahrestagung II

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 127))

Abstrakt

In den letzten Jahren haben dreidimensionale (3D) Szenen in der Medizin zunehmende Bedeutung erlangt. Zahlreiche Verfahren zur Oberflächenrekonstruktion und Darstellung von 3D-Szenen wurden entwickelt. Trotzdem sind 3D-Szenen gegenüber 2D-(Schicht)-Bildern in der klinischen Routine eher die Ausnahme als die Regel. Ein Grund dafür ist, daß die Arbeit mit 3D-Szenen völlig anders ist als die Auswertung von Röntgen- und Schichtbildern, was einen Lernprozess beim Mediziner erfordert. Ein weiterer Grund ist, daß die Informatik bisher keine überzeugenden Interaktionstechniken für 3D-Szenen entwickelt hat. Dabei sind viele der Techniken, die für die Medizin entwickelt werden müßten, auch im CAD/CAM-Bereich anwendbar.

Die Verfahren zur Oberflächenrekonstruktion und Darstellung von 3D-Szenen müssen sich daher für die Bilddarstellung und die Implementierung von Interaktionsmöglichkeiten eignen. Der vorliegende Artikel gibt unter diesem Aspekt einen Überblick über die wichtigsten, bei uns zum großen Teil implementierten, Verfahren. Es wird darüber hinaus eine neue Variante der Klasse der Back-To-Front (BTF)-Algorithmen vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Referenzen

  1. Artzy, E.; Frieder, G.; Herman, G.T.: The Theory, Design, Implementation and Evaluation of a Three-Dimensional Surface Detection Algorithm. Computer Graphics and Image Processing 15 (1981) 1–24.

    Article  Google Scholar 

  2. Block, P.; Udupa, J.K.: Application of Computerized Tomography to Radiation Therapy and Surgical Planning Proceedings of the IEEE 71, 3 (1983) 351–355.

    Google Scholar 

  3. Boecker, F.R.P.; Hoehne, K.H.; Witte, G.: Experiments with Three-Dimensional Reconstruction from Ventriculograms. In Hoehne, K.H. (ed.):Pictorial Information System in Medicine, ASI Series, Springer Verlag 1986, 469–485.

    Chapter  Google Scholar 

  4. Boecker, F.R.P.; Tiede, U.; Höhne, K.H.:Combined Use of Different Algorithms for Interactive Surgical Planning. Proceedings Car’85, Berlin 1985, 572–577.

    Google Scholar 

  5. Brewster, L.J.;Trivedi, S.S.;Tuy, H.K.;Udupa, J.K.:Interactive Surgical Planning Computer Graphics and Application, 4,3(1984)31–40.

    Google Scholar 

  6. Chen, L.S.;Herman, G.T.;Reynolds, R.A.;Udupa, J.K.: Surface Shading in the Cuberille Environment. Computer Graphics and Application, 5,12(1985)33–43.

    Google Scholar 

  7. Christiansen, H.N.;Sederberg, T.W.:Conversions of Complex Contour Line Definitions into Polygonal Element Mosaics. Proc. SIGGRAPH 1978, Computer Graphics 12,3 (1978) 187–192.

    Google Scholar 

  8. Cooper L.A.; Shepard, R.N.:Turning something over in the mind. Scientific American, 251,6(1984)114–126.

    Google Scholar 

  9. Finke, R.A.:Mental Imagery and the Visual System. Scientific American, 254,3(1986)76–83.

    Google Scholar 

  10. Frieder, G.; Herman, G.T.; Meyer, C.;Udupa, J.K.:Large Software Problems for Small Computers: An Example from Medical Imaging. Software 2, 5 (1985) 37–47.

    Google Scholar 

  11. Frieder, G.; Gordon, D.; Reynolds, R.A.: Back-to-Front Display of Voxel-Based Objects. Computer Graphics and Applications 1 (1985) 52–60.

    Article  Google Scholar 

  12. Fuchs, H.;Kedem, Z.H.;Uselton,S.P.:Optimal Surface Reconstruction from Planar Contours. Communications of the ACM 20, 10 (1977) 693–702

    Article  Google Scholar 

  13. Fuchs, H.;Abram, G.D.;Grant, E.D.:Near Real-Time Shaded Display of Rigid Objects. Computer Graphics, 17,3 (1983) 65–72. BSP-Trees.

    Google Scholar 

  14. Goldwasser, S.M.;Reynolds R.A.;Bapty, T.; Baraff, D.; Summers, J.; Talton, D.A.; Walsh, E.:Physician’s Workstation with Real-Time Performance. Computer Graphics and Applications 5,12(1985)44–57.

    Google Scholar 

  15. Gordon, D.; Reynolds, R.A.: Image Space Shading of treedimensional Objects. Computer Vision Graphics and Image Prozessing, 19, (1985) 361–370

    Article  Google Scholar 

  16. Gruber, L.: Untersuchung der Octree-Datenstruktur im Hinblick auf Interaktionsmöglichkeiten in medizinischen 3D-Szenen. Diplomarbeit, FE Informatik, Universität Hamburg, in Vorbereitung.

    Google Scholar 

  17. Herman, G.T.; Liu, H.K.: Three-Dimensional Display of Human Organs from Computed Tomograms. Computer Graphics and Image Processing 9 (1979) 1–21.

    Article  Google Scholar 

  18. Herman, G.T.: Three-Dimensional Imaging from Tomograms. In: Höhne, K.H.(ed.): Digital Image Processing in Medicine, Proceedings Hamburg, Oct. 1981, Springer Verlag.

    Google Scholar 

  19. Höhne, K.H.; Bernstein, R.: Shading 3D-Images from CT using Gray Level Gradients. IEEE-Transactions of Medical Images, MI-5(1986)45–47.

    Google Scholar 

  20. Höhne, K.H.; Delapaz, R.L.;Bernstein, R.;Taylor, R.C.:Combined Surface Display and Reformatting for the 3D-Analysis of Tomographic Data (CT or MRI). Submitted for Publication, 1986.

    Google Scholar 

  21. Jackel, D.:The Graphics PARCUM System: A 3D Memory Based Computer Architecture for Processing and Display of Solid Models, Computer Graphics Forum 4(1985)21–32.

    Google Scholar 

  22. Keppel, E.:Approximating Complex Surfaces by Triangulation of Contour Lines IBM Journal of Research and Development, 19, 1 (1974), 2–11.

    Google Scholar 

  23. Lenz, R.;Gudmundsson, B.;Lindskog, B.:Manipulation and Display of 3D-Imagea for Surgical Planning. Proc. SPIE, Cannes, 1985.

    Google Scholar 

  24. with biomedical applications in neuron ultrastructure and computerized Tomography, Americ. Federation of Inform. Proces. Soc., 45 (1986) 241–250.

    Google Scholar 

  25. Meagher, D.J.:Applying Solids Processing Methods to Medical Planning, Proceedings of the NCGA, 1985.

    Google Scholar 

  26. Meagher, D.J.:Geometric Modeling Using Octree Encoding, Computer Graphics and Image Processing 19 (1982) 129–147.

    Article  Google Scholar 

  27. Meagher, D.J.:A New Mathematics for Solids Processing, Computer Graphics World, 1984.

    Google Scholar 

  28. Oswald, H.:Three-Dimensional Imaging from Computed Tomograms. In Huang, T.S. (ed.):Image Sequence Processing and Dynamic Scene Analysis, ASI Series, Springer Verlag 1983, 710–724.

    Chapter  Google Scholar 

  29. Oswald, H.; Kropatch, W.; Leberl F.: A Perspective Projection Algorithm with Fast Evaluation of Visibility for Discrete Three-Dimensional Scenes. Proceedings of the ISMII, 1982 Berlin, 464–467.

    Google Scholar 

  30. Pizer, S.M.:Systems for 3D Display in Medical Imaging. In Hoehne, K.H. (ed.):Pictorial Information System in Medicine, ASI Series, Springer Verlag 1986, 235–250.

    Chapter  Google Scholar 

  31. Requicha A.A.G.:Representations for Rigid Solids: Theory, Methods, and Systems. Computing Surveys, 12,4(1980) 437–464.

    Google Scholar 

  32. Rhodes, M.L.;Azzawi, Y.M.;Cgu, E.S.;Pang A.T.;Glenn, W.V.;Rothman, S.L.G.: A Network Solution for Strukture Models and Custom Prostheses Manufactoring from CT-Data. Proceedings Car’85, Berlin 1985, 583–592.

    Google Scholar 

  33. Robb, R.A.; Hoffmann, E.A.; Sinak, L.J.; Harris, L.D.;Ritman, E.L.: High-Speed Three-Dimensional X-Ray Computed Tomography: The Dynamic Spatial Reconstructor. Proceedings of the IEEE 71, 3 (1983) 308–319.

    Google Scholar 

  34. Samet, H.:The Quadtree and Related Hierarchical Data Structures. Computing Surveys, 16,2 (1984) 187–260.

    Google Scholar 

  35. Shepard, R.N.; Metzler, J.: Mental Rotation of three-dimensional Objects. Science 171, 701–703.

    Google Scholar 

  36. Shani, U.:Understanding Three-Dimensional Images - Recognition of Abdominal Anatomy from CAT Scans, UMI Research Press, Ann Arbor, Michigan, 1984.

    Google Scholar 

  37. Shneiderman, B.:Seven Plus or Minus Two Central Issues in Human-Computer Interaction. Proceedings ACM Chi’86, Boston, 1986, 343–349.

    Google Scholar 

  38. Sungaroff, A.; Greenberg, D.: Computer Generated Images for Medical Applications, Computer Graphics, 12 (1978) 196–202.

    Article  Google Scholar 

  39. Tiede, U.;Boecker, F.R.P.;Witte, G.;Höhne, K.H.:Eine neue Heuristik für die 3D-Rekonstruktion medizinischer Bildsequenzen mittels Triangulation. Proceedings des 7. DAGM-Symposiums, Erlangen, 1985, 207–212.

    Google Scholar 

  40. Tiede, U.:Vergleich von Voxel- bzw. triangulierter Oberflächenrepräsentation für die 3D-Darstellung medizinischer Objekte. Diplomarbeit, FB Informatik, Universität Hamburg, 1986.

    Google Scholar 

  41. Tönnies, K.D.; Jackel, D.:Automatische drei-dimensionale Oberflächenrekonstruktion aus Konturlinien zur Visualisierung von komplexen anatomischen Objekten. Proceedings der 27. Jahrestagung der GMDS in Hamburg, Springer Verlag, 1982.

    Google Scholar 

  42. Tönnies, K.D.:Erzeugung von 3D-Objectrepräsentationen durch Triangulation. Technischer Bericht 86/2, Technische Universität Berlin, FB 20, 1986.

    Google Scholar 

  43. Tuy, H.K.;Tuy, L.T.: Direct 2-D Display of 3-D Objects. Computer Graphics and Applications 10 (1984) 29–33.

    Article  Google Scholar 

  44. Udupa, J.K.:Display and Analysis of 3D Medical Images Using Directed Contours. Proc. of the NCGA, 1985, 145–155.

    Google Scholar 

  45. Udupa, J.K.: Interactive Segmentation and Boundary Surface Formation for 3-D Digital Images. Computer Graphics and Image Processing 18 (1982) 213–234.

    Article  MATH  Google Scholar 

  46. Udupa, J.K.: Display of 3D Information in Diskrete 3D Scenes Produced by Computerized Tomography. Proceedings of the IEEE 71, 3 (1983) 420–431.

    Article  Google Scholar 

  47. Udupa, J.K.; Hung, H.M.; Chen, L.S.:Interactive Display of 3D Medical Objects. In Hoehne, K.H. (ed.):Pictorial Information System in Medicine, ASI Series, Springer Verlag 1986, 445–459.

    Chapter  Google Scholar 

  48. Vannier, M.W.; Mash, J.C.; Warren, J.D.:Three Dimensional Computer Graphics for Craniofacial Surgical Planning and Evaluation. Computer Graphics 17 (1983) 263–274.

    Article  Google Scholar 

  49. Wendler, T.; Grewer, R.; Mönnich, K.J.; Svensson, H.:Design Considerations for Multi-Modality Medical Workstations. In Hoehne, K.H. (ed.):Pictorial Information System in Medicine, ASI Series, Springer Verlag 1986, 401–420.

    Chapter  Google Scholar 

  50. Wood, E.H.: Digital Angiography and Ventriculometry. Herz 10,4 (1985), 183–192.

    Google Scholar 

  51. Yasuda, T.; Toriwaki, J.I.;Yokoi, S.;Katada, K.: A Three-Dimensional Display System of CT Images for Surgical Planning. Proceedings ISMII 1984, 322–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boecker, F.R.P., Hoehne, KH., Tiede, U., Riemer, M. (1986). Algorithmen und Datenstrukturen für die Interaktion in Dreidimensionalen Medizinischen Szenen.. In: Hommel, G., Schindler, S. (eds) GI — 16. Jahrestagung II. Informatik-Fachberichte, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71389-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71389-7_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16814-0

  • Online ISBN: 978-3-642-71389-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics