Skip to main content

Fast Segmentation Methods Based on Partial Differential Equations and the Watershed Transformation

  • Conference paper
Mustererkennung 1998

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

Segmentation algorithms are presented which combine regularization by nonlinear partial differential equations (PDEs) with a watershed transformation with region merging. We develop efficient algorithms for two well-founded PDE methods. They use an additive operator splitting (AOS) leading to recursive and separable filters. Further speed-up can be obtained by embedding AOS schemes into a pyramid framework. Examples demonstrate that the preprocessing by these PDE techniques eases and stabilizes the segmentation. The typical CPU time for segmenting a 2562 image on a workstation is less than 2 seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Beucher, Segmentation tools in mathematical morphology, C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.), Handbook of pattern recognition and computer vision, World Scientific, Singapore, 443–456, 1992.

    Google Scholar 

  2. P.J. Burt, E.H. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans. Comm., Vol. 31, 532–540, 1983.

    Article  Google Scholar 

  3. F. Catte, P.-L. Lions, J.-M. Morel, T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., Vol. 29, 182–193, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Fairfield, Toboggan contrast enhancement for contrast segmentation, Proc. ICPR 10 (Atlantic City, June 16–21, 1990), Vol. 1, 712–716, 1990.

    Google Scholar 

  5. L.D. Griffin, A.C.F. Colchester, G.P. Robinson, Scale and segmentation of grey- level images using maximum gradient paths, Image Vision Comput., Vol. 10, 389–402, 1992.

    Article  Google Scholar 

  6. N. Nordstrom, Biased anisotropic diffusion - a unified regularization and diffusion approach to edge detection, Image Vision Comput., Vol. 8, 318–327, 1990.

    Article  Google Scholar 

  7. O.F. Olsen, Multiscale watershed segmentation, J. Sporring, M. Nielsen, L. Florack, P. Johansen (Eds.), Gaussian scale-space theory, Kluwer, Dordrecht, 191–200, 1997.

    Google Scholar 

  8. P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 12, 629–639, 1990.

    Article  Google Scholar 

  9. C. Schnorr, Unique reconstruction of piecewise smooth images by minimizing strictly convex non-quadratic functionals, J. Math. Imag. Vision, Vol. 4, 189–198, 1994.

    Article  MathSciNet  Google Scholar 

  10. J. Weickert, Anisotropic diffusion in image processing, Teubner-Verlag, Stuttgart, 1998.

    MATH  Google Scholar 

  11. J. Weickert, B.M. ter Haar Romeny, M.A. Viergever, Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Trans. Image Proc., Vol. 7, 398–410, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weickert, J. (1998). Fast Segmentation Methods Based on Partial Differential Equations and the Watershed Transformation. In: Levi, P., Schanz, M., Ahlers, RJ., May, F. (eds) Mustererkennung 1998. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72282-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72282-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64935-9

  • Online ISBN: 978-3-642-72282-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics