Skip to main content

Nondeterminism and Motion Compensation for Weighted Finite Automata

  • Conference paper
Informatik ’98

Part of the book series: Informatik aktuell ((INFORMAT))

  • 111 Accesses

Abstract

Nondeterministic finite automata with states and transitions labeled by real numbers as weights have turned out to be powerful tools for compression of still images and video sequences. These Weighted Finite Automata (WFA) as introduced and studied by Culik II, Kari, Karhumäki and others can exploit self-similarities within single pictures, between colour components and also sequences of pictures. Thus, as a coding-method WFA has much in common with fractal encoding algorithms like Barnsley’s Iterated Function Systems, but it can be viewed as well as a generalization of gain-shape vector quantization. WFA-coding is particularly effective for low bit-rates and our current implementation clearly outperforms the video standard H.263. This paper discusses the control of nondeterminism — i.e. the fan-out of states in the WFA labeled by the same input-symbol — and of motion compensation and shows how both features are handled as two facets of a coding decision taken during WFA-inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Eilenberg. Automata, Languages and Machines, Vol. A. Academic Press, New York, 1974.

    MATH  Google Scholar 

  2. A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series. Springer-Verlag, Berlin, 1978.

    MATH  Google Scholar 

  3. J. Berstel and A. Nait Abdullah. Quadtrees generated by finite automata. In AFCET 61-62, pages 167–175, 1989.

    Google Scholar 

  4. K. Culik and J. Kari. Image compression using weighted finite automata. Computers and Graphics, 17 (3): 305–313, 1993.

    Article  Google Scholar 

  5. K. Culik and J. Kari. Image-data compression using edge-optimizing algorithm for wfa interference. Journal of Information Processing and Management, 30: 829–838, 1994.

    Article  Google Scholar 

  6. J. M. Shapiro. Embedded image coding using zerotrees of wavelet coeffi-cients. IEEE Transactions on Signal Processing, 41 (12): 3445–3462, December 1993.

    Article  MATH  Google Scholar 

  7. J. Kari and P. Fränti. Arithmetic coding of weighted finite automata. Theoretical Informatics and Applications, 28 (3–4): 343–360, 1994.

    MATH  Google Scholar 

  8. U. Hafner. Refining image compression with weighted finite automata. In J. A. Storer and M. Cohn, editors, Proc. of Data Compression Conference, pages 359–368, 1996.

    Google Scholar 

  9. U. Hafner. Image and video coding with weighted finite automata. In Proc. of the IEEE International Conference on Image Processing, pages 326–329, 1997.

    Chapter  Google Scholar 

  10. U. Hafner, J. Albert, S. Frank, and M. Unger. Weighted finite automata for video compression. IEEE Journal on Selected Areas in Communications, 16 (1): 108–119, January 1998.

    Article  Google Scholar 

  11. K. Culik and J. Karhumaki. Finite automata computing real functions. SIAM J. Comput., 23 (4): 789–814, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41 (12), December 1993.

    Google Scholar 

  13. M. Gharavi-Alkhansari and T. S. Huang. Fractal video coding by matching pursuit. In Proc. of the IEEE International Conference on Image Processing, 1996.

    Google Scholar 

  14. Y. Fisher. Fractal image compression with quadtrees. In Yuval Fisher, editor, Fractal Image Compression, chapter 3, pages 55–77. Springer-Verlag, 1995.

    Google Scholar 

  15. Telenor Research Digital Video Coding Group and Development. Telenor H.263 codec, version 2.0. http://www.nta.no/brukere/DVC/, June 1996.

    Google Scholar 

  16. International Telecommunication Union (ITU), Geneva, Switzerland. Video Coding for low bitrate communication, May 1996. Recommendation H.263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albert, J., Hafner, U. (1998). Nondeterminism and Motion Compensation for Weighted Finite Automata. In: Dassow, J., Kruse, R. (eds) Informatik ’98. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72283-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72283-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64938-0

  • Online ISBN: 978-3-642-72283-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics