Abstract
Let L2(ℝ) (L2(ℝ2), respectively) be the space of all square integrable functions on ℝ (ℝ)2, i.e., $$\rm \|f\|^2_{L^2(R)}:= {1\over\sqrt{2\pi}} {\int\limits^\infty_{-\infty}}\mid f(x)\mid^2dx \infty (\|f\|^2_{L^2(R^2)}:= {1\over{2\pi}} {\int\limits_{R^2}} \mid f(x,y)\mid^2d(x,y) \infty).$$ The L2 (ℝ) (L2 (ℝ2)) Fourier transform is defined by $$f\hat (u)\ :=\ \ {\mathop {\rm l.i.m.}\limits_{\rho \rightarrow\infty}}\ {1\over\sqrt{2\pi}}\ {\int\limits^\rho_{-\rho}}\ {\rm f(x)e^{-iux}dx (f\hat (u,v):= {\mathop {\rm l.i.m.}\limits_{\rho \rightarrow\infty}}\ {1\over{2\pi}}\ {\int\limits^\rho_{-\rho}} {\int\limits^\rho_{-\rho}}\ f(x,y)e^{-i(ux+vy)}dxdy)}.$$
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Butzer, P.L. - Hinsen, G.: Reconstruction of bounded signals from pseudoperiodic, irregularly spaced samples. (to appear)
Higgins, J.R.: A sampling theorem for irregularly spaced sample points. IEEE Trans. Inform. Theory IT-22 (1976), 621–622.
Levinson, N.: Gap and Density Theorems. New York: AMS, Colloq. Publ. Vol. XXVI, 1940.
Nikol’skii, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Berlin-Heidelberg-New York: Springer-Verlag, 1975.
Yen, J.L.: On nonuniform sampling of bandwidth-limited siqnals. IRE Trans. Circuit Theory CT-3 (1956), 251–257.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1987 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Butzer, P.L., Hinsen, G. (1987). Nonuniform Sampling Expansions of Two-Dimensional Bandlimited Signals. In: Meyer-Ebrecht, D. (eds) ASST ’87 6. Aachener Symposium für Signaltheorie. Informatik-Fachberichte, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73015-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-73015-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-18401-0
Online ISBN: 978-3-642-73015-3
eBook Packages: Springer Book Archive