Skip to main content

Nonuniform Sampling Expansions of Two-Dimensional Bandlimited Signals

  • Conference paper
ASST ’87 6. Aachener Symposium für Signaltheorie

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 153))

Abstract

Let L2(ℝ) (L2(ℝ2), respectively) be the space of all square integrable functions on ℝ (ℝ)2, i.e., $$\rm \|f\|^2_{L^2(R)}:= {1\over\sqrt{2\pi}} {\int\limits^\infty_{-\infty}}\mid f(x)\mid^2dx \infty (\|f\|^2_{L^2(R^2)}:= {1\over{2\pi}} {\int\limits_{R^2}} \mid f(x,y)\mid^2d(x,y) \infty).$$ The L2 (ℝ) (L2 (ℝ2)) Fourier transform is defined by $$f\hat (u)\ :=\ \ {\mathop {\rm l.i.m.}\limits_{\rho \rightarrow\infty}}\ {1\over\sqrt{2\pi}}\ {\int\limits^\rho_{-\rho}}\ {\rm f(x)e^{-iux}dx (f\hat (u,v):= {\mathop {\rm l.i.m.}\limits_{\rho \rightarrow\infty}}\ {1\over{2\pi}}\ {\int\limits^\rho_{-\rho}} {\int\limits^\rho_{-\rho}}\ f(x,y)e^{-i(ux+vy)}dxdy)}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Butzer, P.L. - Hinsen, G.: Reconstruction of bounded signals from pseudoperiodic, irregularly spaced samples. (to appear)

    Google Scholar 

  2. Higgins, J.R.: A sampling theorem for irregularly spaced sample points. IEEE Trans. Inform. Theory IT-22 (1976), 621–622.

    Article  MathSciNet  Google Scholar 

  3. Levinson, N.: Gap and Density Theorems. New York: AMS, Colloq. Publ. Vol. XXVI, 1940.

    Google Scholar 

  4. Nikol’skii, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Berlin-Heidelberg-New York: Springer-Verlag, 1975.

    Google Scholar 

  5. Yen, J.L.: On nonuniform sampling of bandwidth-limited siqnals. IRE Trans. Circuit Theory CT-3 (1956), 251–257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Butzer, P.L., Hinsen, G. (1987). Nonuniform Sampling Expansions of Two-Dimensional Bandlimited Signals. In: Meyer-Ebrecht, D. (eds) ASST ’87 6. Aachener Symposium für Signaltheorie. Informatik-Fachberichte, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73015-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73015-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18401-0

  • Online ISBN: 978-3-642-73015-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics