
Deutsches 
Forschungszent rum 
fOr KOnsti lche 
Intelllgenz GmbH 

Research 
Report 

RR-91-32 

Towards the Integration of Functions, 
Relations and Types 

in an AI Programming" Language 

Rolf Backofen, Lutz Euler, Gunther Gorz 

August 1991 

Deutsches Forschungszentrum fur Kunstliche Intelligenz 
GmbH 

Postfach 20 80 
D-6750 Kaiserslautem, FRG 
Tel.: (+49631) 205-3211/13 
Fax: (+49631) 205-3210 

Stuhlsatzenhausweg 3 
D-6600 Saarbriicken II, FRG 
Tel.: (+49681) 302-5252 
Fax: (+49681) 302-5341 



Deutsches Forschungszentrum 
fur 

KOnstliche Intelligenz 

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr 
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarnrOcken is a non-profit 
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM, 
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Philips, Siemens 
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German 
Ministry for Research and Technology, by the shareholder companies, or by other industrial 
contracts. 

The DFKI conducts application-oriented basic research in the field of artificial intelligence and 
other related subfields of computer science. The overall goal is to construct systems with 
technical knowledge and common sense which - by using AI methods - implement a problem 
solution for a selected application area. Currently, there are the following research areas at the 
DFKI: 

o Intelligent Engineering Systems 
o Intelligent User Interfaces 
o Intelligent Communication Networks 
o Intelligent Cooperative Systems. 

The DFKI strives at making its research results available to the scientific community. There exist 
many contacts to domestic and foreign research institutions, both in academy and industry. The 
DFKI hosts technology transfer workshops for shareholders and other interested groups in 
order to inform about the current state of research. 

From its beginning, the DFKI has provided an attractive working environment for AI researchers 
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at 
the end of the building-up phase. 

Prof. Dr. Gerhard Barth 
Director 



Towards the Integration of Functions, Relations and Types 
in an AI Programming Language 

Rolf Backofen, Lutz Euler, Gunther Gorz 

DFKI-RR-91-32 



A short version of this report has been published in Heinz Marburger (ed.), 
Proceedings of the 14th German Workshop on Artificial Intelligence (GWAI-
90), Springer, Berlin 1990. 

This work has been supported by a grant from The Federal Ministry for 
Research and Technology (FKZ ITW-9002 0). 

© Deutsches Forschungszentrum fOr KOnstliche Intelligenz 1991 

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to 
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes 
provided that all such whole or partial copies include the following: a notice that such copying is by 
permission of Deutsches Forschungszentrum fOr KOnstliche Intelligenz, Kaiserslautern, Federal Republic 
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable 
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require 
a licence with payment of fee to Deutsches Forschungszentrum fOr KOnstliche Intelligenz. 



Towards the Integration of Functions, 
Relations and Types in an AI Programming 

Language 

Rolf Backofen 
DFKI GmbH 
Saarbrucken 

Lutz Euler 
Gunther Gorz 

Universitat Hamburg 
Fachbereich Informatik - AB N atS 

Abstract 

This paper describes the design and implementation of the program­
ming language PC-Life. This language integrates the functional and 
the logic-oriented programming style and feature types supporting in­
heritance. This combination yields a language particularly suited to 
knowledge representation, especially for application in computational 
linguistics. 
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1 Introduction 

Different programming styles have proved to be interesting for AI programming. The 
most important ones are the functional, the logic-oriented and the object-oriented 
style. The functional programming style is defined by deterministic computations 
and first-classness of functional expressions of any order. A logic-oriented language 
like Prolog contains constructor terms with an unification operation defined on them 
and uses a resolution-based theorem prover. The object-oriented style allows to 
specify a hierarchy of classes containing objects. The properties of these objects can 
be inheri ted through the hierarchy. 

In [4] Alt-Kaci describes the language "LIFE", which was developed as an at­
tempt to integrate these three programming styles into a single language. The most 
interesting new ideas in his paper are the conception of feature types and the treat­
ment of function evaluation in a logic-oriented programming language. 

LIFE has in its type concept the core of a knowledge representation language 
and its other concepts can serve as blocks out of which to build the remaining part 
of such a language. In particular it can be applied to computational linguistics. 
Here we find functional formalisms, like Montague-grammar, logic-based parsing, 
e. g. in definite clause grammar, and the use of complex types with inheritance for 
unification-based grammar formalisms and for representation of semantic knowledge. 
The use of a language integrating all of these has obvious advantages in that the same 
formalism can be used from syntactic processing up to semantics and pragmatics. 
Conventional hierarchically organized systems cannot avoid to apply the constraints 
of these different levels sequentially whereas such a language can account for them 
simultaneously. 

The design of PC-Life l
, which has been developed in Backofen's and Euler's 

master's theses [6,9], aims towards the same goals. Our main interest was to explore 
the difficulties that occur in designing a language that combines the abovementioned 
programming styles. The aim was definitely not to build a knowledge representation 
language that could immediately be used in an AI application. 

We chose Scheme as an implementation language for its simplicity and versatility 
in dealing with complex control structures. This leads to some differences to Alt­
Kaci's LIFE: Firstly, it was natural to use a Lisp-like syntax and user interface as 
opposed to LIFE's Prolog-like toplevel. Secondly, the functional part of the language 
is more like Scheme than like any other "pure" functional language (e. g. ML [14]) . 
This concerns questions of whether functions are of fixed arity, automatic currying 
is possible, arguments are passed by pattern matching and so on. 

More important differences to Alt-Kaci's work in the definition of the language 
are: PC-Life contains closed types, atoms and atomic types (see below). With 
respect to disjunctions it has a considerably larger expressive power, because Ait­
Kaci's LIFE admits only type disjunctions. With this restriction an appropriate 
type-as-set semantics cannot be given (see below). 

IThe name is derived from "LIFE" and from the implementatiori language "PC-Scheme" . 
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The suitability of PC-Life for natural language processing has been demonstrated 
by implementing a small system for the interpretation of a fragment of German. 

This paper describes first the overall design of the language. Then we give a 
formal description of feature terms together with implementation issues, especially 
for disjunctive feature terms. At last the design decisions concerning the implemen­
tation of functions and relations are detailed. 

2 Design of the Language 

A program in PC-Life consists of the definition of a type hierarchy and definitions 
of functions and relations. These can be loaded into an interpreter which then 
evaluates functional expressions interactively. 

The data types of PC-Life consist of the types of the type hierarchy and feature 
terms. The type hierarchy is a partial order of the elementary types of the Scheme 
system (number, string, .. . ), which are called here "atomic types", arbitrary user­
defined types, a least element -L and a greatest element T . The "values" of the 
Scheme system (e. g. 42, "Deep Thought") are called "atomic values" and are also 
part of the type hierarchy.2 Atomic types are the only elements of the hierarchy 
that can semantically3 be represented as a union of other types. This sort of types 
is also known as disjunctive types. 

A feature term can be regarded as an extension of first-order constructor terms 
with variable arity and fields labeled by name instead of place. A feature term 
consists of a type entry, which is a type symbol, and any number of attributes or 
features, which are pairs of an attribute name and an attribute value which again 
is a feature term. These terms are called subterms of the first feature term. Any 
subterm (including the outermost term) can be labeled with a variable. Using 
the same variable at different places expresses a coreference constraint between the 
corresponding subterms. 

At any place where a variable can occur any number of functional expressions 
may be given too. These may contain references to any variables in the feature 
term and so express funct ional constraints between subterms. For a more elaborate 
description of feature terms see Alt-Kaci [4]. A formal definition of feature terms 
and their semantics is given in section 4.1. 

"Closed types" are a special kind of types. A feature term of such a type may 
have only attributes whose names are taken from a fixed list defined with the type. 
So these types are used to model constructor terms of fixed arity. A feature term of 
atomic type - whose type is an atomic type or an atomic value - cannot contain 
attributes. It may be seen as a constructor term of arity O. 

A problem occurs with the structured types of the Scheme system, especially 
with pair, the values of which are cons cells, but also with vector. It was tempting 

2Considering only the partial order the distinction between types and values, common in other 
programming languages, is no longer meaningful. 

3In a set-theoretic semantics, cf. section 4.1 
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to use these as built-in constructors and allow any feature term as part of these 
structures. But this turned out to be impossible because the implementation of any 
feature term must contain extra information for internal management (e. g. to allow 
undoing of unification effects in the case of backtracking). So only atomic types and 
values are allowed as parts of structured Scheme types. If the user needs lists of 
feature terms, the only solution is to define a closed type cons with the attributes 
head and tail. 

An important extension of the concept of feature terms is the introduction of 
disjunctions, because they allow to express ambiguous information. To that end at 
any place where a feature term can occur also a set of feature terms is allowed. 

Thus the integration of functions with types provides that functions may have 
feature terms as arguments and value and that feature terms may contain functional 
constraints between subterms. To fully benefit of complex types it is necessary to 
have functions that pass their arguments by pattern matching. Such a function can 
be applied if all of its actual arguments are subsumed by their corresponding formal 
parameters. The idea is that the formal parameters contain variables at~ arbitrary 
places whose values are then used to build the.result of the function. The values are 
derived by an unification operation on the actual and formal parameters that does 
not modify the actual parameters. 

To explain the integration of relations we begin with ordinary Prolog. Here 
relations are defined over first order terms. Since the function symbols in these 
terms are only used as constructors for complex data types and are never applied, 
the syntax of terms is too much restricted. They can be extended up to feature terms 
without losing the possibility of using unification and a resolution-based theorem­
prover on them. This is described in full detail in [5]. 

As already mentioned, PC-Life uses a functional top-level. The function prove 
is provided to enable the use of the relational part. It takes a relation application as 
an argument. Calling prove starts a resolution prover on this relation that delivers 
the solutions one by one. 

A second way by which relations may be used is the following: The user specifies 
the partial order of types in the type hierarchy by entering "<"-relations of types. 
Additionally it is possible to define a type as being a feature term of another type 
which further obeys relational restrictions. If a feature term of such a type is used 
in an unification it must normally be expanded, i. e. the definition of the type is 
unified with its feature term and the relational restrictions are added to the list of 
goals that remain to be proven. 

An important advantage of integration is the treatment of the evaluation of 
functional expressions that occur inside of feature terms. They must be evaluated 
when a feature term is defined or unified to check if the functional constraints can 
be met. Here the problem is that arguments of function applications may be not 
sufficiently specified to allow evaluation.4 The solution proposed by Alt-Kaci is what 

4This problem occurs in simpler form in Prolog when variables on the right hand side of an is 

relation are uninstantiated . 
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he calls residuation. Evaluation is interrupted and delayed until the arguments that 
caused the break are specified more exactly. This may happen when they are further 
unified in the course of the resolution process. It is then tested again whether the 
evaluation can proceed. If disjunctions are used an evaluation may even be restarted 
several times from the same point but with different values for the arguments. 

With respect to residuation we can differentiate between three classes of functions 
in PC-Life: 

1. System functions, i. e. functions of the underlying Scheme system. These 
require that all their arguments are atomic values and residuate on all other 
feature terms. 

2. Normal Junctions accept all values as arguments and pass them using lambda 
binding. They cannot cause residuation. 

3. Pattern matching functions pass arguments by' pattern matching. They resid­
uate if any argument is not sufficiently specified to decide if it is subsumed by 
the corresponding pattern. 

For a full description of the language see [9] . 

3 Representation of the Type Hierarchy 

It should be clear now that unification and the test for subsumption of feature terms 
are important operations in PC-Life. These operations require to calculate the infi­
mum (glb) of types or to check for ":s;" -relations in the type hierarchy respectively. 
Straightforward implementations of the latter operations require exponential time 
(in the size of the type hierarchy). In [3] Alt-Kaci describes a coding approach 
that allows a much more efficient execution of these operations. The basic idea is 
to embed the partial order of types into a boolean lattice which is implemented by 
bitvectors. The above mentioned operations are then implemented as bitwise logical 
operations. A coding function maps each type onto its bitvector. This function can 
be precomputed in polynomial time and its value for each type can be stored as the 
code of this type. 

Alt-Kaci describes three related coding methods that preserve existent glbs. We 
have corrected and implemented the algorithm for "compact encoding". This yields 
an embedding with the following properties: 

• The size of the code bitvectors lies between log2 N (where N is the number 
of types) in case the hierarchy is already a boolean lattice and N - 1 in the 
worst case. The important case of the hierarchy being a binary tree leads to 
a code size of N /2 . 

• At least one lub is preserved, namely T. Only in the case that the hierarchy 
is a boolean lattice all lubs are preserved. (This last property must hold for 
all embeddings that preserve glbs.) 
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Alt-Kaci says that type disjunction and negation can be implemented with such an 
encoding. Indeed one can implement a lub operation as bitwise or and negation as 
bitwise negation. However because of the above mentioned restrictions on using lub 
operations this leads to an incorrect semantics. 

4 Feature terms with distributed disjunctions 

4.1 The ~-term calculus 

As already mentioned, feature terms consist of a type entry, features and coreference 
constraints. A string of features is called a path or an address. Formally a feature 
term is a triple (6, 'ljJ, T) with 6 as the prefix-closed set of all addresses, a type 
function 'ljJ : 6 -t T, which assigns a type to each address, and a tag function T, 

which associates a variable with each address. A feature term is called inconsistent 
iff its denotation is the empty set in all interpretations. 

Feature terms come with a set-theoretic semantics, which is described in de­
tail in Alt-Kaci [2]. A similar system is introduced in Smolka [13] and Nebel and 
Smolka [12]. Feature terms can be understood as expressions of an attributive rep­
resentation language that is basically an instance of feature logic. Features are 
interpreted as partial functions whereas in languages of the KL-ONE family they 
generalize to roles. It has been shown (mentioned in [12]) that this causes undecid­
ability of subsumption. 

Feature terms defined so far allow too much redundancy. E. g., one can get 
equivalent feature terms by consistent variable renaming. Therefore Alt-Kaci intro­
duced abstract objects, 'ljJ-terms,' as representatives for equivalence classes of feature 
terms which denote the same set of objects in each interpretation.s In 'ljJ-terms 
coreferences are expressed by a coreference relation K. Two addresses are coreferent 
iff they are assigned the same variable. A 'ljJ-term is therefore a triple (6, 'ljJ, K) with 
a right-invariant coreference relation. A 'ljJ-term must be referentially consistent 
which means that any address of a coreference class of K carries the same subterm. 
A 'ljJ- term is consistent iff 1.. t/. Im( 'ljJ). 

There is a partial order defined on the set of 'ljJ-terms, the subsumption order. 
A 'ljJ-term tl is subsumed by a term t2 (tl ~ t2) iff in any interpretation [tl]I is a 
subset of [t2]I. The subsumption relation can be calculated easily using the following 
syntactic conditions: 

The basic operation on 'ljJ-terms is unification. The unification of two 'ljJ-terms tl 
and t2 combines the information contained in both terms yielding a term t = tl n t2 
with [t]I = [tl]I n [t2]I. Syntactically unification is the process of computing the 
greatest lower bound (glb) of the terms tl and t 2 • The most difficult part of this 

5Because there is a unique translation from feature terms to ~-terms we don't distinguish them 
terminologically. 
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computation is to determine the resulting coreference relation K. The resulting term 
domain ~ is simply the union of all equivalence classes of K, and the type of an 
address a E ~ is the glb of all types of all addresses in a j K in both terms. 

Because t is the glb of tl and t 2, K must be the smallest coreference relation 
containing Kl and K 2 • This is the right-invariant completion of 

K' = U (Kl oK2t 
n EN 

Taking the transitive closure K' of the composition of Kl and K2 means to join all 
equivalence classes of Kl and K2 which have an address in common. 

'!jJ-terms are represented as structures built up of nodes. A node is a data struc­
ture with three entries: a type entry, a subnode entry which is a list of pairs consist­
ing of features and corresponding values, and a .coreference entry. The unification 
algorithm presented by Ai"t-Kaci in [5] descends recursively through both '!jJ-term 

structures. Nodes with the same address in both structures are merged by de refer­
encing them to a new node carrying the joined information. Dereferencing uses the 
coreference entry. The unification fails if ~ results as a type entry for any node. 

4.2 Including disjunctions 

The unification of terms corresponds semantically to their intersection. To express 
the union of '!jJ-terms we introduce disjunctions which are sets of '!jJ-terms. The 
unification of disjunctions of '!jJ-terms is done by unifying all possible combinations 
of '!jJ-terms of the two disjunctions. 

Because of the problem of global coreferences one cannot simply admit disjunc~ 
tions as feature values. Global coreferences are generated during unification if a 
coreference in one term involves an address which is not in the scope of the disjunc­
tions actually looked up in the other term. For example, the coreference between it 
and l2 is global in the unification of 

The straightforward result of the unification 

tOP(ll:::} X : {+; - } 
l2:::} X : {+; - } ) 

(1) 

is incorrect, since it contains the term top( II:::} + , 12 :::} -) as one possible exten­
sion, which is contradictory to the first unificand (see also EiselejDorre [8]). One 
possible solution is to expand the disjunction to the greatest common prefix of all 
addresses of an global coreference (d. [8]). Because we want '!jJ-terms to be able to 
share the same subterm this method cannot be employed. Instead we decided to 
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use distributed disjunctions. The fundamental idea behind distributed disjunctions 
is that the problem of global coreferences can be solved by naming disjunctions. So 
the result of (1) can be calculated straightforwardly, because now both occurring 
disjunctions carry the same symbol. It must only be guaranteed that in later unifica­
tions the same alternative of a named disjunction is chosen wherever the disjunction 
symbol occurs. 

Because disjunctions can be nested, one has not only to remember a pair con­
sisting of a disjunction symbol and the number of the resp. alternative, but a whole 
set of those pairs. This leads to the notion of context. A context con is a set of 
pairs (disj.symbol, alt. number) satisfying the following condition: For any disjunc­
tion symbol d if there is a pair (d, a) E can then there is no pair (d, b) E can with 
a # b. Each node in a disjunctive tP-term structure has a unique context, which can 
be defined inductively: 

• each subnode of a node n has the same context as nj 

• each alternative of a disjunction named with d has a context which i~ extended 
by (d, alt.number). 

We define a partial order on contexts and compatibility of contexts: 

• A context conI is smaller than a context con2 iff conI ~ con2 . 

• conI is compatible with con2 iff conI U con2 is a context. 
iff there is no disjunction symbol d with 

(d, a) E conI, (d, b) E con2 and a # b. 

The fact that each node has 'a unique context can be translated into the formal 
definition of tP-terms by associating a context to each address in the term domain. A 
disjunctive term domain is a family of domains [~con]conEKon indexed by contexts, 
where Kon is the set of all possible contexts, and a family of type functions and 
coreference relations on these term domains. A disjunctive tP-term, which we call a 
8-term, ,is therefore a triple ([~con), [tPcon], [Kcon)). The conditions a tP-term has to 
satisfy must be slightly modified for 8-terms : 

• [~con] must be weakly prefix-closed: Every prefix of an address a E ~con must 
be contained by a term domain ~con' with a smaller context can'. This can be 
motivated using the following example: 

In the term toP(lI::::} {d1 top (l2::::} td j t 2}) the address 11./2 is an element of 
~{(dl,I)}' The prefixes € and II are naturally in a term domain with smaller 
context. 

• [Kcon) has to obey strong right-invariance: For every context can the corefer­
ence relation Kcon has to be right-invariant and any coreference of Kcon has to 
be continued right-invariantly to all contexts can' with can ~ can': 

[a E ~con /\ (a, b) E Kcon) ::::} 

Vcon', Vv : [can ~ can' /\ av E ~con' :::} (av, bv) E Kcon') 
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For example, the coreference (It, 12 ) in the term 

top(lt ~ X: {d1 top(l3 ~ tt) ; t2} 
12~ X) 

must influence all coreference relations in all other contexts, e. g. (/ 1 ./3 ,/2 .13 ) E 

K{(d1 ,1)} . 

• There are additional conditions for [~conJ and [~conJ which have more technical 
reasons and are left out here for simplicity. 

As in the ~-term calculus, the unification of 8-terms has primarily to compute 
the resulting family of coreference relations. This again is done by composition of 
coreference relations of the involved 8-terms. But this time the contexts the relations 
are indexed by have to be considered, so that a composition sequence has the form 

As already mentioned, the object of naming disjunctions was to use the same alter­
native wherever the disjunction symbol occurs. The contexts of coreference relations 
within any sequence must be pairwise compatible. The sequence itself has a context 
con which is s imply the union of all use d contexts. A corefe re n ce relation Kcon of 

the resulting 8-term is the union of all sequences with context con. 
There are two kinds of disjunctions that can occur in 8-terms. Value disjunctions 

occur if disjunctions are allowed as feature values. A simple variant of these are 
disjunctions of atomic values. Attribute disjunctions constitute the second kind , as 
in the term . 

t = top( a ~ + 
{d1 b ~ c ~ + }). 

Our formalism supports both value and attribute disjunctions. Although the current 
implementation of the 8-term unification algorithm handles only value disjunctions, 
it can easily be extended to attribute disjunctions. In this case the management of 
the set of all defined features for every node - which is required to process closed 
types - is more complicated. 

A 8-term is represented by a structure which is built up of 8-term nodes. A 
8-term node is either a ~-term node or a named disjunction whose list of alter­
natives internally consists of 8-term nodes. For possibly nested disjunctions the 
notion of a disjunction tree is introduced. An alternative in a disjunction tree is a 
non-disjunction which can be reached by traversing the tree. The context of an alter­
native a relative to its root disjunction r is defined as relcon(a, r) = con(a)\con(r). 
It describes the path from r to the alternative a. 

The unification algorithm for 8-terms is an extension of the unification algorithm 
for ~-terms (see Ai·t-Kaci [5]). Again both 8-term structures are passed through all 
possible paths and all nodes reached under the same address are merged. ~-term 
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I ~~ref: J--7 } I ~~ref: J--7 } I ~~ref: J--7 \ 
7 } 7\ 7\ tl n t~ 

tl n ti tl n ti tl n t~ tl n ti tl n t~ 

Figure 1: This example shows the successive construction of btl. The nodes tl n t~ 
are also elements of btil, e. g. t~ is bound to tl n t~ thus completing the merging of 
tl and t~ in the context {(dI , 1); (d2, 1); (d3, 1)}. 

nodes are unified as before. In order to unify two disjunction trees, the algorithm 
determines all alternatives of the first tree together with their relative context. Every 
alternative is then unified with all alternatives of the second disjunction tree whose 
relative contexts are compatible to its relative context. In addition, every alternative 
a of both disjunction trees is bound to a disjunction tree ba containing all results of 
unifications involving a. Therefore every alternative of ba is an element a n a' with 
an appropriate alternative a'. The relative context of a n a' is relcon(a n a', a) = 
con(a')\con(a), such that the equation con(a n a') = con(a) U con(a') holds. 

Although contexts are only partially ordered by set inclusion, a disjunction tree 
defines a total ordering on the relative contexts of its nodes. The unification al­
gorithm processes all alternatives in ascending order. This holds also for every 
alternative of a binding tree ba • So we can build up the binding tree successively: at 
the first unification involving the alternative a ba is built up to the relative context 
of a n a'. During all further unifications ba is always extended at the leaves (see also 
Fig. 1). 

Determining consistency is somewhat more costly for o-terms than for ",,-term 
structures. A ",,-term node is inconsistent if its type entry is 1.. or if there exists a 
subterm which is inconsistent. A di sjunction is inconsistent if all alternatives are 
inconsistent. Because disjunctions may be distributed, there may be inconsistencies 
which cannot be detected locally. For example the following term is inconsistent: 

top( 11 => {dl 1..; {d2 1..; td } 
12 => {d2 t 2; {dl h; 1..}}) 

Therefore all inconsistent contexts must be stored globally. 
A detailed description of the o-term-calculus is given in [6]. Similar systems 

using distributed disjunctions can be found in Dorre and Eisele [7] and Maxwell and 
Kaplan [11]. 
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We see two advantages of our approach compared to Dorre and Eisele's: (1) Their 
formalism does not treat attribute disjunctions. (2) In our system the unification 
of disjunctions is defined more abstractly, in that the method of finding appropriate 
disjunction alternatives is left unspecified, whereas in their system it is not expressed 
separately but is part of the rewriting rules. 

Maxwell and Kaplan provide a general method of extending feature systems into 
systems with named disjunctions. Each part of the resulting feature structure car­
ries its own context, and rewriting rules used by the original system are translated 
into a contexted version, which rewri tes both the context and this part. Because 
there is no explicit representation of the relation between a context and its corre­
sponding feature structures, the following inefficiencies arise: During unification of 
feature structures parts are unified although they carry incompatible contexts, and 
when components with the same context are rewritten a new context is calculated 
unneccessarily. Therefore efficient unification algorithms for non-disjunctive feature 
structures cannot be used. 

A remark on negation 

The implementation of PC-Life allows only negation of atomic values. For the 
treatment of negated complex feature terms additionally negation of types, unde­
fined feature entries and inequality constraints6 are required . The latter will cause 
problems if used in conjunction with closed types: Because of the interpretation of 
closed types as constructors two nodes carrying the same closed type are unequal iff 
they are not dereferenced to the same node and if there exists a feature for which 
the corresponding subnodes are unequal. This transfer of inequality constraints to 
subnodes possibly has to be iterated if nodes with closed terms are nested, therefore 
producing a lot of conditions that have to be tested during each unification. 

5 The Functional Part: A Variant of Scheme 

The implementation of PC-Life in Scheme leads naturally to the use of a modified 
Scheme as the functional part of the language. So we immediately get the advantages 
of first-class functions and binding environments, lexical binding within a block 
structure and full tail recursion optimization. But without modifications Scheme 
can not handle argument passing by pattern matching and operations with feature 
terms. 

Regarding efficiency it is desirable to use the already existent Scheme evaluator 
as an evaluator for functional expressions in PC-Life. However this turned out to 
be very difficult if not impossible, considering the need to enable the interruption 
of evaluation at any point where a function is applied to insufficiently specified 
arguments. 

6 w hich are sometimes also called disagreements or negations of path equivalences. 
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FQr this reasQn we decided tQ implement a new evaluatQr whQse design fQllQWS 
AbelsQn/Sussman [1, p. 293:ff]. It is necessary tQ prQvide the central functiQns eval 
and apply, the CQre special fQrms like lambda and if, and tQ define representatiQns 
fQr envirQnments and prQcedures. All .other parts can be implemented by using the 
existing evaluatQr. The nQn-CQre special fQrms like cond and let in PC-Scheme are 
defined as macros and are autQmatically provided by enabling the new evaluatQr tQ 
handle macrQs. All .other functiQns .of the Scheme system are handled as primitives 
.of the new evaluatQr. 

Feature terms are implemented as a new datatype that is checked fQr in places 
where residuatiQn may .occur. 

FunctiQns passing their arguments by pattern matching are defined using the 
special fQrm match. They are treated specially in the evaluatQr by apply. 

An assignment in a functiQnal expressiQn will lead tQ incQrrect results if this 
expressiQn is evaluated frQm inside a disjunctive feature term. This happens because 
the state .of executiQn that is saved in the case .of a residuatiQn contains .only the 
cQntinuatiQn and nQt the binding environments. Thus in case .of multiple e)}ecutiQn 
the same envirQnment will be affected incQrrectly. Because .of this side-effects must 
be aVQided in all places where a residuatiQn can" .occur. 

6 The Relational Part: A Variant of PROLOG 

The relatiQnal part .of the language is an elabQratiQn .of PROLOG in which first .order 
terms are replaced by 8-terms. The rQle .of the IQgical variable is taken by term­
nQdes., This means that cQreferences dQ nQt .only .occur between different addresses 
.of .one term but alsQ within different parts .of a clause. The bQund/unbQund effect 
.of IQgical variables is replaced by a gradual refinement .of nQdes. 

The resQlutiQn prQver we implemented is an extensiQn .of the .one described by 
Haynes [10]. Its cQntrQl structure is based .on SQ called "upward-failure-cQntinuatiQns": 
the theQrem prQver returns a failure cQntinuatiQn which is invQked when backtracking 
is necessary. The failure cQntinuatiQns are implemented as Scheme cQntinuatiQns. 

The theQrem prQver wQrks with a structure cQPying technique. NQrmally it is 
necessary tQ CQPy the 8-term structure .of the clause befQre unifying it with the 
argument the relatiQn is invQked with. Our methQd aVQids superfluQus cQPying 
by simultaneQusly dQing the tWQ steps. This has the advantage that in case the 
unificatiQn fails nQt the whQle recQrded structure has been cQpied. 

Using Haynes' taxQnQmy [10, p. 673] the integratiQn .of the relatiQnal intQ the 
functiQnal part is an e~vironment embedding. This means that bQth share a CQmmQn 
envirQnment, therefQre prQviding efficient infQrmatiQn transfer. If an embedding ad­
ditiQnally allQws the sharing .of cQntrQI cQntexts, it is called complete. AlthQugh 
failure cQntinuatiQns which stQre a specific cQntrQl CQntext can be .obtained at the 
functiQnal tQP-Ievel, .our embedding is nQt yet cQmplete, because an arbitrary invQca­
tiQn .of failure cQntinuatiQns can viQlate PROLOG's semantics. But the embedding 
can be cQmpleted by incQrpQrating Haynes' state-space mQdel (see [10)). 
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Type expansion 

A type of the type hierarchy can be defined as a b-term with additional relational 
constraints. If a b-term is of such a type, the type has to be expanded. This is 
done by unifying the b-term with the defined term and evaluating the relational 
constraints. 

In a system with a relational top level like Alt-Kaci's Life, type expansion is easy, 
because evaluating the relational constraints is done by adding them as additional 
goals. But with a functional top level this causes problems, because the user can 
not control the nondeterminism that occurs when expanding a type with relational 
constraints. This is contradictory to the deterministic behavior of the top level. 
Therefore we suppress type expansion at the top level. 
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