
Deutsches
Forschungszent rum
fOr KOnsti lche
Intelllgenz GmbH

Research
Report

RR-91-32

Towards the Integration of Functions,
Relations and Types

in an AI Programming" Language

Rolf Backofen, Lutz Euler, Gunther Gorz

August 1991

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken II, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarnrOcken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Philips, Siemens
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Towards the Integration of Functions, Relations and Types
in an AI Programming Language

Rolf Backofen, Lutz Euler, Gunther Gorz

DFKI-RR-91-32

A short version of this report has been published in Heinz Marburger (ed.),
Proceedings of the 14th German Workshop on Artificial Intelligence (GWAI-
90), Springer, Berlin 1990.

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-9002 0).

© Deutsches Forschungszentrum fOr KOnstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fOr KOnstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr KOnstliche Intelligenz.

Towards the Integration of Functions,
Relations and Types in an AI Programming

Language

Rolf Backofen
DFKI GmbH
Saarbrucken

Lutz Euler
Gunther Gorz

Universitat Hamburg
Fachbereich Informatik - AB N atS

Abstract

This paper describes the design and implementation of the program­
ming language PC-Life. This language integrates the functional and
the logic-oriented programming style and feature types supporting in­
heritance. This combination yields a language particularly suited to
knowledge representation, especially for application in computational
linguistics.

Keywords: Knowledge representation, AI software, inferences, nat­
ural language processing

Contents

1 Introduction

2 Design of the Language

3 Representation of the Type H ierarchy

4 Feature terms with distributed disjunctions
4.1 The 1/I-term calculus .
4.2 Including disjunctions

5 The Functional Part: A Variant of Scheme

6 The Relational Part: A Variant of PROLOG

References

1

2

3

5

6

6
7

11

12

13

1 Introduction

Different programming styles have proved to be interesting for AI programming. The
most important ones are the functional, the logic-oriented and the object-oriented
style. The functional programming style is defined by deterministic computations
and first-classness of functional expressions of any order. A logic-oriented language
like Prolog contains constructor terms with an unification operation defined on them
and uses a resolution-based theorem prover. The object-oriented style allows to
specify a hierarchy of classes containing objects. The properties of these objects can
be inheri ted through the hierarchy.

In [4] Alt-Kaci describes the language "LIFE", which was developed as an at­
tempt to integrate these three programming styles into a single language. The most
interesting new ideas in his paper are the conception of feature types and the treat­
ment of function evaluation in a logic-oriented programming language.

LIFE has in its type concept the core of a knowledge representation language
and its other concepts can serve as blocks out of which to build the remaining part
of such a language. In particular it can be applied to computational linguistics.
Here we find functional formalisms, like Montague-grammar, logic-based parsing,
e. g. in definite clause grammar, and the use of complex types with inheritance for
unification-based grammar formalisms and for representation of semantic knowledge.
The use of a language integrating all of these has obvious advantages in that the same
formalism can be used from syntactic processing up to semantics and pragmatics.
Conventional hierarchically organized systems cannot avoid to apply the constraints
of these different levels sequentially whereas such a language can account for them
simultaneously.

The design of PC-Life l
, which has been developed in Backofen's and Euler's

master's theses [6,9], aims towards the same goals. Our main interest was to explore
the difficulties that occur in designing a language that combines the abovementioned
programming styles. The aim was definitely not to build a knowledge representation
language that could immediately be used in an AI application.

We chose Scheme as an implementation language for its simplicity and versatility
in dealing with complex control structures. This leads to some differences to Alt­
Kaci's LIFE: Firstly, it was natural to use a Lisp-like syntax and user interface as
opposed to LIFE's Prolog-like toplevel. Secondly, the functional part of the language
is more like Scheme than like any other "pure" functional language (e. g. ML [14]) .
This concerns questions of whether functions are of fixed arity, automatic currying
is possible, arguments are passed by pattern matching and so on.

More important differences to Alt-Kaci's work in the definition of the language
are: PC-Life contains closed types, atoms and atomic types (see below). With
respect to disjunctions it has a considerably larger expressive power, because Ait­
Kaci's LIFE admits only type disjunctions. With this restriction an appropriate
type-as-set semantics cannot be given (see below).

IThe name is derived from "LIFE" and from the implementatiori language "PC-Scheme" .

2

The suitability of PC-Life for natural language processing has been demonstrated
by implementing a small system for the interpretation of a fragment of German.

This paper describes first the overall design of the language. Then we give a
formal description of feature terms together with implementation issues, especially
for disjunctive feature terms. At last the design decisions concerning the implemen­
tation of functions and relations are detailed.

2 Design of the Language

A program in PC-Life consists of the definition of a type hierarchy and definitions
of functions and relations. These can be loaded into an interpreter which then
evaluates functional expressions interactively.

The data types of PC-Life consist of the types of the type hierarchy and feature
terms. The type hierarchy is a partial order of the elementary types of the Scheme
system (number, string, .. .), which are called here "atomic types", arbitrary user­
defined types, a least element -L and a greatest element T . The "values" of the
Scheme system (e. g. 42, "Deep Thought") are called "atomic values" and are also
part of the type hierarchy.2 Atomic types are the only elements of the hierarchy
that can semantically3 be represented as a union of other types. This sort of types
is also known as disjunctive types.

A feature term can be regarded as an extension of first-order constructor terms
with variable arity and fields labeled by name instead of place. A feature term
consists of a type entry, which is a type symbol, and any number of attributes or
features, which are pairs of an attribute name and an attribute value which again
is a feature term. These terms are called subterms of the first feature term. Any
subterm (including the outermost term) can be labeled with a variable. Using
the same variable at different places expresses a coreference constraint between the
corresponding subterms.

At any place where a variable can occur any number of functional expressions
may be given too. These may contain references to any variables in the feature
term and so express funct ional constraints between subterms. For a more elaborate
description of feature terms see Alt-Kaci [4]. A formal definition of feature terms
and their semantics is given in section 4.1.

"Closed types" are a special kind of types. A feature term of such a type may
have only attributes whose names are taken from a fixed list defined with the type.
So these types are used to model constructor terms of fixed arity. A feature term of
atomic type - whose type is an atomic type or an atomic value - cannot contain
attributes. It may be seen as a constructor term of arity O.

A problem occurs with the structured types of the Scheme system, especially
with pair, the values of which are cons cells, but also with vector. It was tempting

2Considering only the partial order the distinction between types and values, common in other
programming languages, is no longer meaningful.

3In a set-theoretic semantics, cf. section 4.1

3

to use these as built-in constructors and allow any feature term as part of these
structures. But this turned out to be impossible because the implementation of any
feature term must contain extra information for internal management (e. g. to allow
undoing of unification effects in the case of backtracking). So only atomic types and
values are allowed as parts of structured Scheme types. If the user needs lists of
feature terms, the only solution is to define a closed type cons with the attributes
head and tail.

An important extension of the concept of feature terms is the introduction of
disjunctions, because they allow to express ambiguous information. To that end at
any place where a feature term can occur also a set of feature terms is allowed.

Thus the integration of functions with types provides that functions may have
feature terms as arguments and value and that feature terms may contain functional
constraints between subterms. To fully benefit of complex types it is necessary to
have functions that pass their arguments by pattern matching. Such a function can
be applied if all of its actual arguments are subsumed by their corresponding formal
parameters. The idea is that the formal parameters contain variables at~ arbitrary
places whose values are then used to build the.result of the function. The values are
derived by an unification operation on the actual and formal parameters that does
not modify the actual parameters.

To explain the integration of relations we begin with ordinary Prolog. Here
relations are defined over first order terms. Since the function symbols in these
terms are only used as constructors for complex data types and are never applied,
the syntax of terms is too much restricted. They can be extended up to feature terms
without losing the possibility of using unification and a resolution-based theorem­
prover on them. This is described in full detail in [5].

As already mentioned, PC-Life uses a functional top-level. The function prove
is provided to enable the use of the relational part. It takes a relation application as
an argument. Calling prove starts a resolution prover on this relation that delivers
the solutions one by one.

A second way by which relations may be used is the following: The user specifies
the partial order of types in the type hierarchy by entering "<"-relations of types.
Additionally it is possible to define a type as being a feature term of another type
which further obeys relational restrictions. If a feature term of such a type is used
in an unification it must normally be expanded, i. e. the definition of the type is
unified with its feature term and the relational restrictions are added to the list of
goals that remain to be proven.

An important advantage of integration is the treatment of the evaluation of
functional expressions that occur inside of feature terms. They must be evaluated
when a feature term is defined or unified to check if the functional constraints can
be met. Here the problem is that arguments of function applications may be not
sufficiently specified to allow evaluation.4 The solution proposed by Alt-Kaci is what

4This problem occurs in simpler form in Prolog when variables on the right hand side of an is

relation are uninstantiated .

4

he calls residuation. Evaluation is interrupted and delayed until the arguments that
caused the break are specified more exactly. This may happen when they are further
unified in the course of the resolution process. It is then tested again whether the
evaluation can proceed. If disjunctions are used an evaluation may even be restarted
several times from the same point but with different values for the arguments.

With respect to residuation we can differentiate between three classes of functions
in PC-Life:

1. System functions, i. e. functions of the underlying Scheme system. These
require that all their arguments are atomic values and residuate on all other
feature terms.

2. Normal Junctions accept all values as arguments and pass them using lambda
binding. They cannot cause residuation.

3. Pattern matching functions pass arguments by' pattern matching. They resid­
uate if any argument is not sufficiently specified to decide if it is subsumed by
the corresponding pattern.

For a full description of the language see [9] .

3 Representation of the Type Hierarchy

It should be clear now that unification and the test for subsumption of feature terms
are important operations in PC-Life. These operations require to calculate the infi­
mum (glb) of types or to check for ":s;" -relations in the type hierarchy respectively.
Straightforward implementations of the latter operations require exponential time
(in the size of the type hierarchy). In [3] Alt-Kaci describes a coding approach
that allows a much more efficient execution of these operations. The basic idea is
to embed the partial order of types into a boolean lattice which is implemented by
bitvectors. The above mentioned operations are then implemented as bitwise logical
operations. A coding function maps each type onto its bitvector. This function can
be precomputed in polynomial time and its value for each type can be stored as the
code of this type.

Alt-Kaci describes three related coding methods that preserve existent glbs. We
have corrected and implemented the algorithm for "compact encoding". This yields
an embedding with the following properties:

• The size of the code bitvectors lies between log2 N (where N is the number
of types) in case the hierarchy is already a boolean lattice and N - 1 in the
worst case. The important case of the hierarchy being a binary tree leads to
a code size of N /2 .

• At least one lub is preserved, namely T. Only in the case that the hierarchy
is a boolean lattice all lubs are preserved. (This last property must hold for
all embeddings that preserve glbs.)

5

Alt-Kaci says that type disjunction and negation can be implemented with such an
encoding. Indeed one can implement a lub operation as bitwise or and negation as
bitwise negation. However because of the above mentioned restrictions on using lub
operations this leads to an incorrect semantics.

4 Feature terms with distributed disjunctions

4.1 The ~-term calculus

As already mentioned, feature terms consist of a type entry, features and coreference
constraints. A string of features is called a path or an address. Formally a feature
term is a triple (6, 'ljJ, T) with 6 as the prefix-closed set of all addresses, a type
function 'ljJ : 6 -t T, which assigns a type to each address, and a tag function T,

which associates a variable with each address. A feature term is called inconsistent
iff its denotation is the empty set in all interpretations.

Feature terms come with a set-theoretic semantics, which is described in de­
tail in Alt-Kaci [2]. A similar system is introduced in Smolka [13] and Nebel and
Smolka [12]. Feature terms can be understood as expressions of an attributive rep­
resentation language that is basically an instance of feature logic. Features are
interpreted as partial functions whereas in languages of the KL-ONE family they
generalize to roles. It has been shown (mentioned in [12]) that this causes undecid­
ability of subsumption.

Feature terms defined so far allow too much redundancy. E. g., one can get
equivalent feature terms by consistent variable renaming. Therefore Alt-Kaci intro­
duced abstract objects, 'ljJ-terms,' as representatives for equivalence classes of feature
terms which denote the same set of objects in each interpretation.s In 'ljJ-terms
coreferences are expressed by a coreference relation K. Two addresses are coreferent
iff they are assigned the same variable. A 'ljJ-term is therefore a triple (6, 'ljJ, K) with
a right-invariant coreference relation. A 'ljJ-term must be referentially consistent
which means that any address of a coreference class of K carries the same subterm.
A 'ljJ- term is consistent iff 1.. t/. Im('ljJ).

There is a partial order defined on the set of 'ljJ-terms, the subsumption order.
A 'ljJ-term tl is subsumed by a term t2 (tl ~ t2) iff in any interpretation [tl]I is a
subset of [t2]I. The subsumption relation can be calculated easily using the following
syntactic conditions:

The basic operation on 'ljJ-terms is unification. The unification of two 'ljJ-terms tl
and t2 combines the information contained in both terms yielding a term t = tl n t2
with [t]I = [tl]I n [t2]I. Syntactically unification is the process of computing the
greatest lower bound (glb) of the terms tl and t 2 • The most difficult part of this

5Because there is a unique translation from feature terms to ~-terms we don't distinguish them
terminologically.

6

computation is to determine the resulting coreference relation K. The resulting term
domain ~ is simply the union of all equivalence classes of K, and the type of an
address a E ~ is the glb of all types of all addresses in a j K in both terms.

Because t is the glb of tl and t 2, K must be the smallest coreference relation
containing Kl and K 2 • This is the right-invariant completion of

K' = U (Kl oK2t
n EN

Taking the transitive closure K' of the composition of Kl and K2 means to join all
equivalence classes of Kl and K2 which have an address in common.

'!jJ-terms are represented as structures built up of nodes. A node is a data struc­
ture with three entries: a type entry, a subnode entry which is a list of pairs consist­
ing of features and corresponding values, and a .coreference entry. The unification
algorithm presented by Ai"t-Kaci in [5] descends recursively through both '!jJ-term

structures. Nodes with the same address in both structures are merged by de refer­
encing them to a new node carrying the joined information. Dereferencing uses the
coreference entry. The unification fails if ~ results as a type entry for any node.

4.2 Including disjunctions

The unification of terms corresponds semantically to their intersection. To express
the union of '!jJ-terms we introduce disjunctions which are sets of '!jJ-terms. The
unification of disjunctions of '!jJ-terms is done by unifying all possible combinations
of '!jJ-terms of the two disjunctions.

Because of the problem of global coreferences one cannot simply admit disjunc~
tions as feature values. Global coreferences are generated during unification if a
coreference in one term involves an address which is not in the scope of the disjunc­
tions actually looked up in the other term. For example, the coreference between it
and l2 is global in the unification of

The straightforward result of the unification

tOP(ll:::} X : {+; - }
l2:::} X : {+; - })

(1)

is incorrect, since it contains the term top(II:::} + , 12 :::} -) as one possible exten­
sion, which is contradictory to the first unificand (see also EiselejDorre [8]). One
possible solution is to expand the disjunction to the greatest common prefix of all
addresses of an global coreference (d. [8]). Because we want '!jJ-terms to be able to
share the same subterm this method cannot be employed. Instead we decided to

7

use distributed disjunctions. The fundamental idea behind distributed disjunctions
is that the problem of global coreferences can be solved by naming disjunctions. So
the result of (1) can be calculated straightforwardly, because now both occurring
disjunctions carry the same symbol. It must only be guaranteed that in later unifica­
tions the same alternative of a named disjunction is chosen wherever the disjunction
symbol occurs.

Because disjunctions can be nested, one has not only to remember a pair con­
sisting of a disjunction symbol and the number of the resp. alternative, but a whole
set of those pairs. This leads to the notion of context. A context con is a set of
pairs (disj.symbol, alt. number) satisfying the following condition: For any disjunc­
tion symbol d if there is a pair (d, a) E can then there is no pair (d, b) E can with
a # b. Each node in a disjunctive tP-term structure has a unique context, which can
be defined inductively:

• each subnode of a node n has the same context as nj

• each alternative of a disjunction named with d has a context which i~ extended
by (d, alt.number).

We define a partial order on contexts and compatibility of contexts:

• A context conI is smaller than a context con2 iff conI ~ con2 .

• conI is compatible with con2 iff conI U con2 is a context.
iff there is no disjunction symbol d with

(d, a) E conI, (d, b) E con2 and a # b.

The fact that each node has 'a unique context can be translated into the formal
definition of tP-terms by associating a context to each address in the term domain. A
disjunctive term domain is a family of domains [~con]conEKon indexed by contexts,
where Kon is the set of all possible contexts, and a family of type functions and
coreference relations on these term domains. A disjunctive tP-term, which we call a
8-term, ,is therefore a triple ([~con), [tPcon], [Kcon)). The conditions a tP-term has to
satisfy must be slightly modified for 8-terms :

• [~con] must be weakly prefix-closed: Every prefix of an address a E ~con must
be contained by a term domain ~con' with a smaller context can'. This can be
motivated using the following example:

In the term toP(lI::::} {d1 top (l2::::} td j t 2}) the address 11./2 is an element of
~{(dl,I)}' The prefixes € and II are naturally in a term domain with smaller
context.

• [Kcon) has to obey strong right-invariance: For every context can the corefer­
ence relation Kcon has to be right-invariant and any coreference of Kcon has to
be continued right-invariantly to all contexts can' with can ~ can':

[a E ~con /\ (a, b) E Kcon) ::::}

Vcon', Vv : [can ~ can' /\ av E ~con' :::} (av, bv) E Kcon')

8

For example, the coreference (It, 12) in the term

top(lt ~ X: {d1 top(l3 ~ tt) ; t2}
12~ X)

must influence all coreference relations in all other contexts, e. g. (/ 1 ./3 ,/2 .13) E

K{(d1 ,1)} .

• There are additional conditions for [~conJ and [~conJ which have more technical
reasons and are left out here for simplicity.

As in the ~-term calculus, the unification of 8-terms has primarily to compute
the resulting family of coreference relations. This again is done by composition of
coreference relations of the involved 8-terms. But this time the contexts the relations
are indexed by have to be considered, so that a composition sequence has the form

As already mentioned, the object of naming disjunctions was to use the same alter­
native wherever the disjunction symbol occurs. The contexts of coreference relations
within any sequence must be pairwise compatible. The sequence itself has a context
con which is s imply the union of all use d contexts. A corefe re n ce relation Kcon of

the resulting 8-term is the union of all sequences with context con.
There are two kinds of disjunctions that can occur in 8-terms. Value disjunctions

occur if disjunctions are allowed as feature values. A simple variant of these are
disjunctions of atomic values. Attribute disjunctions constitute the second kind , as
in the term .

t = top(a ~ +
{d1 b ~ c ~ + }).

Our formalism supports both value and attribute disjunctions. Although the current
implementation of the 8-term unification algorithm handles only value disjunctions,
it can easily be extended to attribute disjunctions. In this case the management of
the set of all defined features for every node - which is required to process closed
types - is more complicated.

A 8-term is represented by a structure which is built up of 8-term nodes. A
8-term node is either a ~-term node or a named disjunction whose list of alter­
natives internally consists of 8-term nodes. For possibly nested disjunctions the
notion of a disjunction tree is introduced. An alternative in a disjunction tree is a
non-disjunction which can be reached by traversing the tree. The context of an alter­
native a relative to its root disjunction r is defined as relcon(a, r) = con(a)\con(r).
It describes the path from r to the alternative a.

The unification algorithm for 8-terms is an extension of the unification algorithm
for ~-terms (see Ai·t-Kaci [5]). Again both 8-term structures are passed through all
possible paths and all nodes reached under the same address are merged. ~-term

9

I ~~ref: J--7 } I ~~ref: J--7 } I ~~ref: J--7 \
7 } 7\ 7\ tl n t~

tl n ti tl n ti tl n t~ tl n ti tl n t~

Figure 1: This example shows the successive construction of btl. The nodes tl n t~
are also elements of btil, e. g. t~ is bound to tl n t~ thus completing the merging of
tl and t~ in the context {(dI , 1); (d2, 1); (d3, 1)}.

nodes are unified as before. In order to unify two disjunction trees, the algorithm
determines all alternatives of the first tree together with their relative context. Every
alternative is then unified with all alternatives of the second disjunction tree whose
relative contexts are compatible to its relative context. In addition, every alternative
a of both disjunction trees is bound to a disjunction tree ba containing all results of
unifications involving a. Therefore every alternative of ba is an element a n a' with
an appropriate alternative a'. The relative context of a n a' is relcon(a n a', a) =
con(a')\con(a), such that the equation con(a n a') = con(a) U con(a') holds.

Although contexts are only partially ordered by set inclusion, a disjunction tree
defines a total ordering on the relative contexts of its nodes. The unification al­
gorithm processes all alternatives in ascending order. This holds also for every
alternative of a binding tree ba • So we can build up the binding tree successively: at
the first unification involving the alternative a ba is built up to the relative context
of a n a'. During all further unifications ba is always extended at the leaves (see also
Fig. 1).

Determining consistency is somewhat more costly for o-terms than for ",,-term
structures. A ",,-term node is inconsistent if its type entry is 1.. or if there exists a
subterm which is inconsistent. A di sjunction is inconsistent if all alternatives are
inconsistent. Because disjunctions may be distributed, there may be inconsistencies
which cannot be detected locally. For example the following term is inconsistent:

top(11 => {dl 1..; {d2 1..; td }
12 => {d2 t 2; {dl h; 1..}})

Therefore all inconsistent contexts must be stored globally.
A detailed description of the o-term-calculus is given in [6]. Similar systems

using distributed disjunctions can be found in Dorre and Eisele [7] and Maxwell and
Kaplan [11].

10

We see two advantages of our approach compared to Dorre and Eisele's: (1) Their
formalism does not treat attribute disjunctions. (2) In our system the unification
of disjunctions is defined more abstractly, in that the method of finding appropriate
disjunction alternatives is left unspecified, whereas in their system it is not expressed
separately but is part of the rewriting rules.

Maxwell and Kaplan provide a general method of extending feature systems into
systems with named disjunctions. Each part of the resulting feature structure car­
ries its own context, and rewriting rules used by the original system are translated
into a contexted version, which rewri tes both the context and this part. Because
there is no explicit representation of the relation between a context and its corre­
sponding feature structures, the following inefficiencies arise: During unification of
feature structures parts are unified although they carry incompatible contexts, and
when components with the same context are rewritten a new context is calculated
unneccessarily. Therefore efficient unification algorithms for non-disjunctive feature
structures cannot be used.

A remark on negation

The implementation of PC-Life allows only negation of atomic values. For the
treatment of negated complex feature terms additionally negation of types, unde­
fined feature entries and inequality constraints6 are required . The latter will cause
problems if used in conjunction with closed types: Because of the interpretation of
closed types as constructors two nodes carrying the same closed type are unequal iff
they are not dereferenced to the same node and if there exists a feature for which
the corresponding subnodes are unequal. This transfer of inequality constraints to
subnodes possibly has to be iterated if nodes with closed terms are nested, therefore
producing a lot of conditions that have to be tested during each unification.

5 The Functional Part: A Variant of Scheme

The implementation of PC-Life in Scheme leads naturally to the use of a modified
Scheme as the functional part of the language. So we immediately get the advantages
of first-class functions and binding environments, lexical binding within a block
structure and full tail recursion optimization. But without modifications Scheme
can not handle argument passing by pattern matching and operations with feature
terms.

Regarding efficiency it is desirable to use the already existent Scheme evaluator
as an evaluator for functional expressions in PC-Life. However this turned out to
be very difficult if not impossible, considering the need to enable the interruption
of evaluation at any point where a function is applied to insufficiently specified
arguments.

6 w hich are sometimes also called disagreements or negations of path equivalences.

11

FQr this reasQn we decided tQ implement a new evaluatQr whQse design fQllQWS
AbelsQn/Sussman [1, p. 293:ff]. It is necessary tQ prQvide the central functiQns eval
and apply, the CQre special fQrms like lambda and if, and tQ define representatiQns
fQr envirQnments and prQcedures. All .other parts can be implemented by using the
existing evaluatQr. The nQn-CQre special fQrms like cond and let in PC-Scheme are
defined as macros and are autQmatically provided by enabling the new evaluatQr tQ
handle macrQs. All .other functiQns .of the Scheme system are handled as primitives
.of the new evaluatQr.

Feature terms are implemented as a new datatype that is checked fQr in places
where residuatiQn may .occur.

FunctiQns passing their arguments by pattern matching are defined using the
special fQrm match. They are treated specially in the evaluatQr by apply.

An assignment in a functiQnal expressiQn will lead tQ incQrrect results if this
expressiQn is evaluated frQm inside a disjunctive feature term. This happens because
the state .of executiQn that is saved in the case .of a residuatiQn contains .only the
cQntinuatiQn and nQt the binding environments. Thus in case .of multiple e)}ecutiQn
the same envirQnment will be affected incQrrectly. Because .of this side-effects must
be aVQided in all places where a residuatiQn can" .occur.

6 The Relational Part: A Variant of PROLOG

The relatiQnal part .of the language is an elabQratiQn .of PROLOG in which first .order
terms are replaced by 8-terms. The rQle .of the IQgical variable is taken by term­
nQdes., This means that cQreferences dQ nQt .only .occur between different addresses
.of .one term but alsQ within different parts .of a clause. The bQund/unbQund effect
.of IQgical variables is replaced by a gradual refinement .of nQdes.

The resQlutiQn prQver we implemented is an extensiQn .of the .one described by
Haynes [10]. Its cQntrQl structure is based .on SQ called "upward-failure-cQntinuatiQns":
the theQrem prQver returns a failure cQntinuatiQn which is invQked when backtracking
is necessary. The failure cQntinuatiQns are implemented as Scheme cQntinuatiQns.

The theQrem prQver wQrks with a structure cQPying technique. NQrmally it is
necessary tQ CQPy the 8-term structure .of the clause befQre unifying it with the
argument the relatiQn is invQked with. Our methQd aVQids superfluQus cQPying
by simultaneQusly dQing the tWQ steps. This has the advantage that in case the
unificatiQn fails nQt the whQle recQrded structure has been cQpied.

Using Haynes' taxQnQmy [10, p. 673] the integratiQn .of the relatiQnal intQ the
functiQnal part is an e~vironment embedding. This means that bQth share a CQmmQn
envirQnment, therefQre prQviding efficient infQrmatiQn transfer. If an embedding ad­
ditiQnally allQws the sharing .of cQntrQI cQntexts, it is called complete. AlthQugh
failure cQntinuatiQns which stQre a specific cQntrQl CQntext can be .obtained at the
functiQnal tQP-Ievel, .our embedding is nQt yet cQmplete, because an arbitrary invQca­
tiQn .of failure cQntinuatiQns can viQlate PROLOG's semantics. But the embedding
can be cQmpleted by incQrpQrating Haynes' state-space mQdel (see [10)).

12

Type expansion

A type of the type hierarchy can be defined as a b-term with additional relational
constraints. If a b-term is of such a type, the type has to be expanded. This is
done by unifying the b-term with the defined term and evaluating the relational
constraints.

In a system with a relational top level like Alt-Kaci's Life, type expansion is easy,
because evaluating the relational constraints is done by adding them as additional
goals. But with a functional top level this causes problems, because the user can
not control the nondeterminism that occurs when expanding a type with relational
constraints. This is contradictory to the deterministic behavior of the top level.
Therefore we suppress type expansion at the top level.

References

[1] Harold Abelson and Gerald Jay Sussmann. Structure and Interpretation of
Computer Programs. MIT Press, 1985.

[2] Hassan Alt-Kaci. An algebraic semantics approach to the effective resolution
of type equations. Theoretical Computer Science, 45:293- 351, 1986.

[3] Hassan Ai·t-Kaci et al. Efficient implementation of lattice operations. ACM
Transactions on Programming Languages and Systems, 11(1):115- 146, 1989.

[4] Hassan Alt-Kaci and Patrick Lincoln. LIFE - a natural language for nat­
ural language. Technical report , Microelectronics and Computer Technology
Corporation, Austin (TX), February 1988.

[5] Hassan Ai·t-Kaci and Roger Nasr. Login: A logic programming language with
built-in inheritance. The Journal of Logic Programming, 3:185-215, 1986.

[6] Rolf Backofen. Integration von Funktionen, Relationen und Typen beim
Sprachentwurf. Teil II: Attributterme und Relationen. Diplomarbeit, Univer­
sitat Erlangen-Niirnberg, 1989.

[7] Jochen Dorre and Andreas Eisele. Determining consistency of feature terms
with distributed disjunctions. In D[ieter] Metzing, editor, Proc. of the l;fh

German Workshop on Artificial Intelligence, volume 216 of Informatik Fach­
berichte, pages 270- 279. Springer, Berlin, 1989.

[8] Andreas Eisele and Jochen Dorre. Unification of disjunctive feature descrip­
tions. In 2(fh Annual Meeting of the Association for Computational Linguistics,
pages 186- 194, Buffalo (NY), 1988.

[9] Lutz Euler. Integration von Funktionen, Relationen und Typen beim Sprach­
entwurf. Teil I: Konzeption, Typhierarchie und Funktionen. Diplomarbeit,
Universitat Erlangen-Niirnberg, 1989.

13

[10] Christopher T. Haynes. Logic continuations. Journal of Logic Programming,
4:157- 176, 1987.

[11] John Maxwell and Ronald Kaplan. An overview of disjunctive constraint sat­
isfaction. In Proceedings of the International Parsing Workshop 1989, pages
18- 27, 1989.

[12] Bernhard Nebel and Gert Smolka. Representation and reasoning with attribu­
tive descriptions. IWBS-Report 81, IBM Deutschland GmbH, Stuttgart, 1989.

[13] Gert Smolka. A feature logic with subsorts. LILOG-Report 33, IBM Deutsch­
land GmbH, Stuttgart, May 1988.

[14] Ake Wikstrom. Functional Programming Using Standard ML. Prentice Hall,
London, 1987.

14

Deutsches
Forschungszentrum
fOr KOnstilche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFIG VerOffentlichungen oder die
aktuelle Liste von erhaltlichen Publikationen
konnen bezogen werden von der oben angegebenen
Adresse.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-90-01
Franz Baader: Terminological Cycles in KL-ONE­
based Knowledge Representation Languages
33 pages

RR-90-02
Hans-Jurgen Biirckert: A Resolution Principle for
Clauses with Constraints
25 pages

RR-90-03
Andreas Dengel. Nelson M. Mattos: Integration of
Document Representation, Processing and
Management
18 pages

RR-90-04
Bernhard Hol/under. Werner Nutt: Subsumption
Algorithms for Concept Languages
34 pages

RR-90-05
Franz Baader: A Formal Definition for the
Expressive Power of Knowledge Representation
Languages
22 pages

RR-90-06
Bernhard Hol/under: Hybrid Inferences in KL-ONE­
based Knowledge Representation Systems
21 pages

RR-90-07
Elisabeth Andre. Thomas Rist: Wissensbasierte
Informationspriisentation:
Zwei Beitrage zum Fachgespriich Graphik und KI:
1. Ein planbasierter Ansatz zur Synthese

illustrierter Dokumente
2. Wissensbasierte Perspektivenwahl fUr die

automatische Erzeugung von 3D­
Objektdarstellungen

24 Seiten

DFKI
-Bibliothek­
PF 2080
6750 Kaiserslautem
FRO

DFKI Publications

The following DFKI publications or the list of
currently available publications can be ordered from
the above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-90-08
Andreas Dengel: A Step Towards Understanding
Paper Documents
25 pages

RR-90-09
Susanne Biundo: Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

RR-90-10
Franz Baader. Hans-Jiirgen Burckert. Bernhard
Hol/under. Werner Nutt. Jorg H. Siekmann:
Concept Logics
26 pages

RR-90-11
Elisabeth Andre. Thomas Rist: Towards a Plan­
Based Synthesis of Illustrated Documents
14 pages

RR-90-12
Harold Boley: Declarative Operations on Nets
43 pages

RR-90-13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Terminological Cycles
40 pages

RR-90-14
Franz Schmalhofer. Otto Kuhn. Gabriele Schmidt:
Integrated Knowledge Acquisition from Text,
Previously Solved Cases, and Expert Memories
20 pages

RR-90-15
Harald Trost : The Application of Two-level
Morphology to Non-concatenative German
Morphology
13 pages

RR·90·16
Franz Baader. Werner Nutt: Adding
Homomorphisms to Commutative/Monoidal
Theories. or: How Algebra Can Help in Equational
Unification
25 pages

RR·90·17
Stephan Busemann: Generalisierte
Phasenstrukturgrammatiken und ihre Verwendung
zur maschineUen Sprachverarbeitung
114 Seiten

RR·91·01
Franz Baader. Hans-Jiirgen Biirckert. Bernhard
Nebel. Werner Nutt. Gert Smolka: On the
Expressivity of Feature Logics with Negation,
Functional Uncertainty, and Sort Equations
20 pages

RR·91-02
Francesco Domni. Bernhard f1011under. Maurizio
Lenzerim. Alberto Marchetti Spaccamela. Daniele
Nardi. Werner Nutt: The Complexity of Existential
Quantification in Concept Languages
22 pages

RR·91·03
B.Hollunder. Franz Baader: Qualifying Number
Restrictions in Concept Languages
34 pages

RR·91·04
Harald Trost: X2MORF: A Morphological
Component Based on Augmented Two-Level
Morphology
19 pages

RR-91·05
Wolfgang Wahlster. Elisabeth Andre. Winfried
Graf. Thomas Rist: Designing Illustrated Texts:
How Language Production is Influenced by
Graphics Generation.
17 pages

RR·91·06
Elisabeth Andre. Thomas Rist: Synthesizing
llIustrated Documents A Plan-Based Approach
11 pages

RR·91·07
Gii.nter Neumann. Wolfgang Finkler: A Head­
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages '

RR·91·08
Wolfgang Wahlster. Elisabeth Andre. Som
Bandyopadhyay. Winfried Graf. Thomas Rist:
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

RR·91·09
Hans-Jurgen Burckert. Jurgen Maller.
Achim Schupeta: RATMAN and its Relation to
Other Multi-Agent Testbeds
31 pages

RR·91·10
Franz Baader. Philipp Hanschke: A Scheme for
Integrating Concrete Domains intO Concept
Languages
31 pages

RR·91-11
Bernhard Nebel: Belief Revision and Default
Reasoning: Syntax-Based Approaches
37 pages

RR-91·12
J.Mark Gawron. John Nerbonne. Stanley Peters:
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Ger(Smolka: Residuation and Guarded Rules for
Constraint Logic Programming
17 pages

RR·91·14
Peter Breuer. Jiirgen Muller: A Two Level

. Representation for Spatial Relations, Part I
27 pages

RR·91-15
Bernhard Nebel. Gert Smolka: Attributive
Description Formalisms ... and the Rest of the
World
20 pages

RR·91·16
Stephan Busemann: Using Pattern-Action Rules for
the Generation of GPSG Structures from Separate
Semantic Representations
18 pages

RR-91-17
Andreas Dengel. Nelson M. Mattos:
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR-91-18
John Nerbonne. Klaus Netter. Abdel Kader Diagne.
Ludwig Dickmann. Judith Klein:
A Diagnostic Tool for German Syntax
20 pages

RR-91-19
Munindar P. Singh: On the Commitments and
Precommitments of Limited Agents
15 pages

RR-91-20
Christoph Klauck. Ansgar Bernardi. Ralf Leg leitn er
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-21
Klaus Netter: Clause Union and Verb Raising
Phenomena in German
38 pages

RR-91-22
Andreas Dengel: Self-Adapting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter. Ansgar Bernardi. Christoph
Klauck. Ralf Legleitner: Akquisition und
Reprasentation von technischem Wissen fUr
Planungsaufgaben im Bereich der Fertigungstechnik
24 Seiten

RR-91-24
Jochen Heinsohn: A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages

RR-91-25
Karin Harbusch. Wolfgang Finkler. Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer. S. Biundo. D. Dengler. M. Hecking .
1. Koehler. G. Merziger:
Integrated Plan Generation and Recognition

- A Logic-Based Approach -
17 pages

RR-91-27
A. Bernardi. H. Boley. Ph. Hanschke .
K. Hinkelmann. Ch. Klauck. O. Kuhn .
R. Legleitner. M. Meyer . M. M. Richter.
F. Schmalhofer. G. Schmidt. W. Sommer:
ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf Backofen. Harald Trost. Hans Vszkoreit:
Linking Typed Feature Formalisms and
Terminological Knowledge Representation
Languages in Natural Language Front-Ends
11 pages

RR-91-30
Dan Flickinger. John Nerbonne:
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39pages

RR-91-31
H.-V. Krieger , J. Nerbonne:
Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
Rolf Backofen. Lutz Euler, Gunther Gorz:
Towards the Integration of Functions, Relations and
Types in an AI Programming Language
14 pages

DFKI Technical Memos

TM-90-02
Jay C. Weber: The Myth of Domain-Independent
Persistence
18 pages

TM-90-03
Franz Baader. Bernhard Hollunder: KRIS:
Knowledge Representation and Inference System
-System Description-
15 pages

TM-90-04
Franz Baader. Hans-Jurgen Biirckert. Jochen
Heinsohn. Bernhard Hal/under. liirgen Miiller.
Bernhard Nebel. Werner NUll. Hans-Jiirgen
Profitlich: Terminological Knowledge Represen­
tation: A Proposal for a Terminological Logic
7 pages

TM-91-01
lana Kohler: Approaches to the Reuse of Pian
Schemata in Planning Formalisms
52 pages

TM-91-02
Knut Hinkelmann: Bidirectional Reasoning of Hom
Clause Programs: Transformation and Compilation
20 pages

TM-91-03
0110 Kuhn. Marc Linster. Gabriele Schmidt:
Clamping, COKAM, KADS, and OMOS:
The Construction and Operationalization
of a KADS Conceptual Model
20 pages

TM-91-04
Harold Boley:
A sampler of Relational/Functional Definitions
12 pages

TM-91-05
Jay C. Weber. Andreas Dengel. Rainer Bleisinger:
Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters
10 pages

TM·91·06
Johannes Stein: Aspects of Cooperating Agents
22 pages

TM·91·08
Munindar P. Singh: Social and Psychological
Commitments in Multiagent Systems
11 pages

TM·91·09
Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents
18 pages

TM·91·10
Bila Buschauer. Peter Poller. Anne Schauder. Karin
Harbusch: Tree Adjoining Grammars mit
UnifIkation
149 pages

TM·91·11
Peter Wazinski: Generating Spatial Descriptions for
Cross-modal References
21 pages

DFKI Documents

D·90·03
Ansgar Bernardi. Christoph Klauck. Ra/f
Legleitner: Abschlu13bericht des Arbeitspaketcs
PROD
36 Seiten

D·90·04
Ansgar Bernardi. Christoph Klauck. Ra/f
Legleitner: STEP: Uberblick tiber eine zUktinftige
Schnittstelle zum Produktdatenaustausch
69 Seiten

D·90·0S
Ansgar Bernardi. Christoph Klauck. Ra/f
Legleitner: Formalismus zur Reprasentation von
Geo-metrie- und Technologieinformationcn als Teil
eines Wissensbasierten Produktmodells
66 Seiten

D·90·06
Andreas Becker: The Window Tool Kit
66 Seiten

D·91·01
Werner Stein. Michael Sintek: RelfunlX - An
Experimental Prolog Implementation of Relfun
48 pages

D·91·03
Harold Boley. Klaus Elsbernd. Hans-Gunther Hein .
Thomas Krause: RFM Manual: Compiling
RELFUN into the RelationallFunctional Machine
43 pages

D·91·04
DFKI Wissenschaftlich·Technischer Jahresbericht
1990
93 Seiten

D·91·06
Gerd Kamp: Entwurf, vergleichende Beschreibung
und Integration eines Arbeitsplanerstellungssystems
fUr Drehteile
130 Seiten

D·91·07
Ansgar Bernardi. Christoph Klauck. Ralf Legleitner
TEC-REP: Reprlisentation von Geometrie- und
Technologieinformationen
70 Seiten

D·91·08
Thomas Krause: Globale Datenflu13analyse und
horizontale Compilation der relational-funktionalen
Sprache RELFUN
137 pages

D·91.·09
David Powers and Lary Reeker (Eds):
Proceedings MLNLO'91 - Machine Learning of
Natural Language and Ontology
211 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-91-10
Donald R. Steiner. Jurgen Muller (Eds.):
MAAMA W'91: Pre-Proceedings of the 3rd
European Workshop on "Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-91-11
Thilo C. Horstmann:Distributed Truth Maintenance
61 pages

D·91-12
Bernd Bachmann:
HierUCon - a Knowledge Representation System
with Typed Hierarchies and Constraints
75 pages

D-91-13
International Workshop on Terminological Logics
Organizers: Bernhard Nebel. Christo! Peltason. Kai

von Luck
131 pages

D·91-14
Erich Achilles. Bernhard Hol/under. Armin Laux.
]org-Peter Mohren: 'XJ{fS : ~owledge
~presentation andlhference ..system
- Benutzerhandbuch -
28 Seitcn

owards the Integration of Functions, Relations and Types
in an AI Programming Language

Rolf Backofen, Lutz Euler, Gunther GOrz

RR-91-32
Research Report

