Skip to main content

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 275))

  • 62 Accesses

Abstract

In modern chemistry, biotechnology or ecology often the following situation has to be modeled: There is a spatially extended system consisting of a lot of individuals (or particles). These individuals may reproduce themselves or die (= “reaction”) and they are able to carry out spatial movement (= “migration”). Typical examples are chemical or microbial processes in large vessels (f.e. bioreactors or sewage treatment plants) or biological populations living in large areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ARNOLD, L.: On the consistency of mathematical models of chemical reactions. In: Dynamics of Synergetic Systems, Springer Series in Synergetics, Vol. 6, Berlin/Heidelberg/ New York 1980.

    Google Scholar 

  2. DITTRICH, P.: A stochastic model of a chemical reaction with diffusion. Prob. Theor. Rel. Fields 79 (1988), 115–128.

    Article  MATH  MathSciNet  Google Scholar 

  3. FEISTEL, R., EßELING, W.: Evolution of Complex Systems, Berlin 1989.

    Google Scholar 

  4. FELSENSTEIN, J.: Excursions along the interface between disruptive selection and stabilizing selection. Genetics 93 (1979), 773–795.

    MathSciNet  Google Scholar 

  5. HAKEN, H.: Synergetics. An Introduction. 3rd Ed., Springer, Berlin/Heidelberg/New York 1983.

    MATH  Google Scholar 

  6. ITO, K.: Distribution-valued processes arising from independent Brownian motions. Hath. Zeitschr. 182 (1983), 17–33.

    Article  MATH  Google Scholar 

  7. JETSCHKE, G.: Hathematik der Selbstorganisation. DVW Berlin und Vieweg Braunschweig/Wiesbaden 1989.

    Google Scholar 

  8. JETSCHKE, G.: Unendlichdimensionale Diffusionsprozesse als Losungen stochastischer partieller Differentialgleichungen, Dissertation B, Jena 1989.

    Google Scholar 

  9. LANDE, R.: Genetic variation and phenotypic evolution during allopatric speciation. Amer. Natur. 116 (1980), 463–479.

    Article  MathSciNet  Google Scholar 

  10. HALEK-HANSOUR, H., VAN den BROECK, C., NICOLIS, G., TURNER, J.W.: Asymptotic properties of Markovian master equations, Ann. Phys. 131 (1981), 283–313.

    Article  Google Scholar 

  11. ROUHANI, S., BARTON, R.: Speciation and the “shifting balance” in a continuous population. Theor. Popul. Biol. 31 (1987), 465–492.

    Article  MATH  Google Scholar 

  12. VAN KAHPEN, N.G.: Stochastic processes in physics and chemistry. North-Holland, Amsterdam/New York/Oxford 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jetschke, G. (1991). Stochastic Modeling of Reaction-Migration Systems. In: Möller, D.P.F., Richter, O. (eds) Analyse dynamischer Systeme in Medizin, Biologie und Ökologie. Informatik-Fachberichte, vol 275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77020-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77020-3_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54669-6

  • Online ISBN: 978-3-642-77020-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics