Zusammenfassung
Ein klassisches Problem der angewandten Mathematik von großer praktischer Bedeutung liegt in der Berechnung der allgemeinen Lösung einer Differentialgleichung. Mit dem Aufkommen der Computeralgebra erfuhr diese Aufgabe noch eine Verschärfung: Die Konstruktion der Lösung soll algorithmisch erfolgen. Diese Forderung erweist sich jedoch als zu stark, so daß man sich mit geringeren Zielen zufrieden geben muß.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Literatur
G.W. Bluman, S. Kumei: Symmetries and Differential Equations. Applied Mathematical Sciences 81, Springer, New York 1989
G. Carrà Ferro: Gröbner Bases and Differential Algebra. In. Proc. AAECC-5, L. Huguet, A. Poli (Eds.), Lecture Notes in Computer Science 350, Springer, Berlin 1987, S. 129–140
E. Cartan: Sur la Theorié des Systémes en Involution et ses Applications à la Relativité. In. Oeuvres Complètes d’Elie Cartan, Partie II, Vol. 2, Gauthier-Villais, Paris 1953, S. 1199— 1230 (Orginal: Bull. Soc. Math. France 59 (1931) 88–118)
J.H. Davenport, Y. Siret, E. Tournier: Computer Algebra. Academic Press, London 1988
J. Della Dora, E. Tournier: Formal Solutions of Differential Equations in the Neighbourhood of Singular Points. In. Proc. SYMSAC ’81, P.S. Wang (Ed.), ACM, New York 1981, S. 25–29
J. Denef, L. Lipshitz: Power Series Solutions of Algebraic Differential Equations. Math. Ann. 267 (1984)
A.S. Fokas: Symmetries and Integrability. Stud. Appl. Math. 77 (1987) 253–299
E.L. Ince: Ordinary Differential Equations. Dover, New York 1956
I. Kaplansky: An Introduction to Differential Algebra. Hermann, Paris 1957
E.R. Kolchin: Differential Algebra and Algebraic Groups. Academic Press, New York 1973
J.J. Kovačic: An Algorithm for Solving Second Order Linear Homogeneous Differential Equations. J. Symb. Comp. 2 (1986) 3–43
S. Lie, G. Sheffers: Vorlesungen über Continuierliche Gruppen. Teubner, Leipzig 1893
W. Miller: Mechanisms for Variable Separation in Partial Differential Equations and their Relationship to Group Theory. In. Symmetries and Nonlinear Phenomena, D. Levi, P. Winternitz (Eds.), World Scientific, Singapur 1988, S. 188–221
P.J. Olver: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics 107, Springer, New York 1986
J.E. Pommaret: Systems of Partial Differential Equations and Lie Pseudogroups. Gordon & Breach, London 1978
J.F. Pommaret: Differential Galois Theory. Gordon & Breach, London 1983
J.F. Pommaret, A. Haddak: Effective Methods for Systems of Algebraic Partial Differential Equations. In. Proc. MEGA ’90, T. Mora, C. Traverso (Eds.), Birkhäuser, Boston 1991, S. 411–426
B.D. Saunders: An Implementation of Kovačic’s Algorithm for Solving Second Order Linear Homogeneous Differential Equations. In. Proc. SYMSAC ’81, P.S. Wang (Ed.), ACM, New York 1981, S. 105–108
D.J. Saunders: The Geometry of Jet Bundles. London Mathematical Society Lecture Notes Series 142, Cambridge University Press, Cambridge 1989
M.F. Singer: Liouvillian Solutions of n-th Order Homogeneous Linear Differential Equations. Am. J. Math. 103 (1981) 661–682
M.F. Singer: Formal Solutions of Differential Equations. J. Symb. Comp. 10 (1990) 59–94
T. Tsujishita: Formal Geometry of Systems of Differential Equations. Sugaku Expositions 3 (1990) 25–73
F. Ulmer: On Liouvillian Solutions of Linear Differential Equations. Erscheint in. Appl. Alg. Eng. Comm. Comp.
A.M. Vinogradov: The.-Spectral Sequence, Langrangian Formalism, and Conservation Laws. I. The Linear Theory. II. The Nonlinear Theory. J. Math. Anal. Appl. 100 (1984) 1–40, 41–129
J. Weiss, M. Tabor, G. Carnevale: The Painlevé Property for Partial Differential Equations. J. Math. Phys. 24 (1983) 522–526
T. Wolf: A Package for the Analytic Investigation and Exact Solution of Differential Equations. In. Proc. EUROCAL ’87, J.H. Davenport (Ed.), Lecture Notes in Computer Science 378, Springer, Berlin 1987, S. 479–490
Wu W.-T.: A Constructive Theory of Differential Algebraic Geometry based on works of J.F. Ritt with Particular Applications to Mechanical Theorem Proving of Differential Geometries. In. Proc. Differential Geometry and Differential Equations, Shanghai 1985, G. Chaohao, M. Berger, R.L. Bryant (Eds.), Lecture Notes in Mathematics 1255, Springer, Berlin 1987, S. 173–189
Wu W.-T.: Automatic Derivation of Newton’s Gravitational Laws from Kepler’s Laws. In. Academica Sinica Mathematics-Mechanization Research Preprints 1 (1987) 53
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Seiler, W.M. (1992). Formale Theorie partieller Differentialgleichungen. In: Krönig, D., Lang, M. (eds) Physik und Informatik — Informatik und Physik. Informatik-Fachberichte, vol 306. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77382-2_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-77382-2_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55298-7
Online ISBN: 978-3-642-77382-2
eBook Packages: Springer Book Archive