Skip to main content

Self-Organization, Evolution, and Neural Networks

  • Conference paper
Aspekte der Selbstorganisation

Part of the book series: Informatik-Fachberichte ((INFORMATIK,volume 304))

  • 76 Accesses

Abstract

Neural networks characterize a field of computer science that goes through a renaissance after a long period of sleep of about some 30 years and is developing rapidly today. Some very promising results achieved show that neural networks may go beyond solutions known so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature

  • Ablay, P.: Optimieren mit Evolutionsstralegien, Spektrum der Wissenschaft, Juli 1987, p. 104–115

    Google Scholar 

  • Ayala, F.J.: Mechanismen der Evolution, Spektrum der Wissenschaft, Mai 1979, p. 8 - 18

    Google Scholar 

  • Babb 11, R.G.: Parallel Processing with Large-Grain Data Flow Techniques, IEEE Computer, July 1984, p. 55–61

    Google Scholar 

  • Batcson, G.: Ökologie des Geistes, Suhrkamp-Verlag 1984

    Google Scholar 

  • DARPA Neural Network Study (October 1987-February 1988), AFCEA International Press

    Google Scholar 

  • Dennis, J.B., Misunas, D.P.: A Computer Architecture for Highly Parallel Signal Processing, ACM Proceedings of the 1974 National Conference, New York, Nov. 1974, p. 402–409

    Google Scholar 

  • Dennis, J.B.: The Varieties of Data Flow Computers, 1th International Conference on Distributed Computing Systems, Huntsvilie/Alabama, Oct. 1979, p. 430–439

    Google Scholar 

  • Dennis, J.B.: Data Flow Supercomputers, IEEE Computer, Nov.1980, p. 48 - 56

    Google Scholar 

  • Dennis, J.B., Gao, G.-R., Todd, K.W.: Modeling the Weather with a Data Flow Supercomputer, IEEE Transactions on Computers, Vol.C-33, No. 7, July 1984, p. 592–603

    Google Scholar 

  • Goldberg, A., Robson, D.,Ingalls, D.: SMALLTALK-80: The Language and its Interpretation SMALLTALK-80: The Interactive Programming Environment, Edison-Wesley, Reading/Mass., 1983

    Google Scholar 

  • Grefenslctle, J.J., Pcttey, C.: Approaches to Machine Learning with Genetic Algorithms, Proceedings of the 1986 IEEE International Conference on Systems, Man and Cybernetics, Atlanta/Georgia, October 1986, p. 55–60

    Google Scholar 

  • Hoare, C.A.R.: Communicating Sequential Processes, Communications of the ACM, Vol. 21, Aug. 1978, p. 666–677

    Article  MATH  Google Scholar 

  • Hull, M.E.: Implementations of the CSP Notation for Concurrent Systems, The Computer Journal, Vol. 29, No. 6, 1986 p. 500–505

    Article  MATH  Google Scholar 

  • Kimura, M.: Die “neutrale” Theorie der molekularen Evolution, Spektrum der Wissenschaft, Januar 1980, p. 94–102

    Google Scholar 

  • Linskcr, R.: From basic Network Principles to Neural Architecture, Proc. Natl. Acad. Sei. USA, Vol.83, 3 Parts: Emergence of spatial-opponent cells, p.7508–7512, Emergence of orientation-selective cells, p.8390-8394, Emergence of orientation columns, p.8779–8783

    Google Scholar 

  • Linsker, R.: Self-Organization in a Perceptual Network, IEEE Computer, March 1988, p. 105–117

    Google Scholar 

  • Lohmann, R.: Selforganization by Evolution Strategy in Visual Systems, Workshop “Evolutionary Strategies”, UniBwM, April ’89, to appear

    Google Scholar 

  • May, D.: OCCAM, SIGPLAN Notices, Vol. 18, April 1983, S. 69–79

    Article  Google Scholar 

  • Mühlenbein, H., Kindermann, J.: The Dynamics of Evolution and Learning-Towards Genetic Neural Networks, Workshop “Evolutionary Strategies”, UniBwM, April ’89, to appear

    Google Scholar 

  • Mündemann, F.: Ein evolutionsbasierter Ansatz zur Konstruktion eines neuronalen Netzes für Mustererkennungsaufgaben, K.Ecker (ed.), Proc. ICoLe ’88, Berichte des Instituts für Informatik der Universität Clausthal

    Google Scholar 

  • Osterloh, M.: Handlungsspielräume und Informationsverarbeitung, Huber 1983

    Google Scholar 

  • Treleaven, P.C., Brownbridge, D.R., Hopkins, R.P.: Data-Driven and Demand-Driven Computer Architecture, ACM Computing Surveys, Vol.14, Nr. l, March 1982, S. 93–143

    Google Scholar 

  • Stebbins, G.L., Ayala, F.J.: Die Evolution des Darwinismus, Spektrum der Wissenschaft, Sept. 1985, p. 58–71

    Google Scholar 

  • Widrow, B., Winter, R.: Neural Nets for Adaptive Filtering and Adaptive Pattern Recognition, IEEE Computer, March 1988, p. 25–39

    Google Scholar 

  • Zhou, H., Grefenstette, J.J.: Induction of finite automata by genetic algorithms, Proceedings of the 1986 IEEE International Conference on Systems, Man and Cybernetics, Atlanta/Georgia, October 1986, p. 170–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mündemann, F. (1992). Self-Organization, Evolution, and Neural Networks. In: Niegel, W., Molzberger, P. (eds) Aspekte der Selbstorganisation. Informatik-Fachberichte, vol 304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77485-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77485-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55428-8

  • Online ISBN: 978-3-642-77485-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics