Abstract
We describe a method to generate blend surfaces which fit with continuous curvature to the primary surfaces. This blend surface is obtained as the bicubic tensor spline minimizing a variational problem. Among all the bicubic tensor splines which give a curvature continuous blend surface, the one is chosen which minimizes a bilinear functional. In Section 2 we summarize and extend the results of a previous paper in such a way that they are applicable to our problem. In Section 3 we outline in detail the procedure how to generate a blend surface based on these results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. A. Adams, Sobolev spaces, Academic Press 1975
M. I. G. Bloor, M. J. Wilson, Generating blend surfaces using partial differential equations. CAD 1989, pp. 165–171
R. Courant, D. Hilbert, Methoden der Mathematischen Physik, Springer-Verlag, Berlin Heidelberg 1968.
A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York 1969.
G. Greiner, Blending techniques based on variational principles, to appear
C. Hoffmann, J. Hopcroft, The potential method for blending surfaces, in G. Farin (ed.), Geometric modelling: algorithms and new trends, SIAM, Philadelphia 1987, pp. 347–364.
H. P. Moreton, C. H. Séquin, Functional Optimization for fair surface design, Siggraph ’92, pp. 167–176
H. Pottmann, Scattered data interpolation based upon generalized minimum norm networks, Preprint Nr. 1232, TH Darmstadt, May 1989
J. R. Rossignac, A. A. G. Requicha, Constant-radius blending in solid modelling, Compu. Mech. Eng. 3 (1984), pp. 65–73.
G. Strang, G. J. Fix, An analysis of the finite element method, Prentic Hall, Englewood Cliffs 1973.
W. Welch, A. Witkin, Variational surface modeling, Siggraph ’92, pp. 157–166
J. R. Woodwark, Blends in geometric modelling, in R. R. Martin (ed.), The mathematics of surfaces II, Oxford University Press, Oxford 1987, pp. 255–297.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Greiner, G., Seidel, HP. (1993). Curvature continuous blend surfaces. In: Falcidieno, B., Kunii, T.L. (eds) Modeling in Computer Graphics. IFIP Series on Computer Graphics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78114-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-78114-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-78116-2
Online ISBN: 978-3-642-78114-8
eBook Packages: Springer Book Archive