Skip to main content

Optimal Transient Service Strategies for Adaptive Heterogeneous Queuing Systems

  • Conference paper
Messung, Modellierung und Bewertung von Rechen- und Kommunikationssystemen

Part of the book series: Informatik aktuell ((INFORMAT))

  • 42 Accesses

Abstract

In this study we investigate heterogeneous queuing systems. Transient evaluation and control is performed with regard to various performance measures. We choose the throughput, the mean number of customers in the system, and the utilization as the measures of performance. Strategies and performance functions are computed for finite capacity queuing systems. Both interruptive and non-interruptive service strategies are considered. Results are provided for systems with two and for systems with three heterogeneous servos. As the method of computation we use Extended Markov Reward Models (EMRMs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baer, M., K. Fischer, G. Hertel, “Leistungsfaehigkeit-Qualitaet-Zuverlaessigkeit Kapitel 4: Modelle und Formeln fuer Bedienungssystememit nichtidentischen Kanaelen,” Transpress Verlagsge- sellschaft mbh, Berlin, (1988).

    Google Scholar 

  2. Bellman, R., Dynamic Programming, Princeton University Press, (1957).

    Google Scholar 

  3. Bolch, G., A. Scheuerer, “Analytische Untersuchung asymmetrischer prioritaetsgesteuerter Wartesysteme,” Proc. of the DGOR-Conf., Stuttgart-Hohenheim, (Sept. 1991).

    Google Scholar 

  4. Crabill, T., D. Gross, MJ. Magazine, “A classified bibliography of research on optimal control of queues,” Operat. Res., Vol. 25, (1977), 219–232.

    Article  MathSciNet  Google Scholar 

  5. Hahne, E.L., “Dynamic routing in an unreliable manufacturing network with limited storage,” Mass. Inst. Technol., Cambridge, Rep. LIDS-TH-1063, (1981).

    Google Scholar 

  6. Howard, R.A., Dynamic Probabilistic Systems, Vol. II: Semi-Markov and Decision Processes, John Wiley & Sons, New York, (1971).

    Google Scholar 

  7. Lin, W., P.R. Kumar, “Optimal control of a queuing system with two heterogeneous servers,” IEEE Trans. Aut. Control, AC-29, (1984), 696–705.

    Google Scholar 

  8. de Meer, H., H. Mauser, “A Modeling Approach for Dynamically Reconfigurable Systems,” Proc. of the Secondlntern. Workshop onResponsive Computer Systems, Kamifukuoka, Saitama, Japan, (Oct. 1–2 1992), pp. 149–158. Also to appear in the Springer Verlag Series on Dependable Computing and Fault Tolerance, (1993).

    Google Scholar 

  9. de Meer, H., “Transiente Leistungsbewertung und Optimierung rekonfigurierbarer fehlertoleranter Rechensysteme,” Arbeitsberichte des IMMD, Vol. 25, No. 10, FA University Erlangen-Nuemberg, Erlangen, (Oct. 1992).

    Google Scholar 

  10. Rösberg, Z., P. Varaiya, J. Walrand, “Optimal Control of service in tandem queues,” IEEE Trans. Automat. Control, Vol. AC-27, (1982), 600–610.

    Google Scholar 

  11. Meyer, J.F., “On Evaluating the Performability of Degradable Computer Systems,,” IEEE Trans, on Computers, Vol. 29, No. 8, (1980), 720–731.

    Article  MATH  Google Scholar 

  12. Sahner, R.A., K.S. Trivedi, “A Software Tool for Learning About Stochastic Models”, IEEE Transactions on Education, Vol. 36, No. 1, (Feb. 1993).

    Google Scholar 

  13. Serfozo, R.F., “An equivalence between continuous and discrete time Markov decision processes,” Operat. Res. Vol. 27, (1979), 616–620.

    Article  MathSciNet  MATH  Google Scholar 

  14. Tsitsiklis, J.N., “Convexity and characterization of optimal policies in a dynamic routing problem,” Mass. Inst. Technol., Cambridge, Rep. LEDS-R-1178, (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Meer, H., Trivedi, K.S., Bolch, G., Hofmann, F. (1993). Optimal Transient Service Strategies for Adaptive Heterogeneous Queuing Systems. In: Walke, B., Spaniol, O. (eds) Messung, Modellierung und Bewertung von Rechen- und Kommunikationssystemen. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78495-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78495-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57201-5

  • Online ISBN: 978-3-642-78495-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics