Skip to main content

Entwicklung eines Sensorsystems zur Führung autonomer mobiler Unterwasser-Roboter

  • Conference paper
Autonome Mobile Systeme 1994

Part of the book series: Informatik aktuell ((INFORMAT))

  • 118 Accesses

Kurzfassung

Zur erfolgreichen Missionsausführung müssen autonome mobile Systeme mit einem Sensorsystem zur dreidimensionalen Erfassung der Umgebungsgeometrie ausgerüstet sein. Bei landgestützen Fahrzeugen werden hierfür überwiegend Stereokameras oder Laserscanner eingesetzt. Zur Führung von Unterwassersystemen eignen sich rein optisch arbeitende Sensoren jedoch nur bedingt, da hier häufig schlechte Sicht und Lichtverhältnisse herrschen. In diesem Beitrag wird ein kombiniertes System aus Unterwasservideokamera und Scanning-Sonar vorgestellt. Beide Sensoren liefern eine zweidimensionale Projektion der dreidimensionalen Szene. Durch die Fusion beider Sensordaten wird die Rekonstruktion der Umgebungsgeometrie möglich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. M. D. Ageev, L. V. Kiselyov, A. P. Shcherbatuk, Integrated Positioning System of Underwater Robot, Proc. of Remotely Operated Vehicles (ROV), 1990, 228–232

    Google Scholar 

  2. R. W. Austin u. a., An Underwater Laser Scanning System, Underwater Imaging, Photography, and Visibility, Proc of SPIE vol. 1537, 1991, 57–73

    Google Scholar 

  3. F. M. Caimi u. a., Advanced Underwater Laser Systems for Ranging, Size Estimation, and Profiling, Marine Technology Society Journal, 27 (1993) 1, 31–41

    Google Scholar 

  4. M. Chantier, C. Reid, Sensor Fusion of Range and Intensity Data forSubsea Robotics, Int. Conf. on Advanced Robotics, 1991, vol. 2, 1311–1314

    Google Scholar 

  5. C. G. Christensson, Mesotech Model 977 Fast Sonar, Proc. of Remotely Operated Vehicles (ROV), 1987, 316–320

    Google Scholar 

  6. R. J. Cyr, Obstacle Avoidance Sonar. An Analysis of System Requirements and Detection Performance During Near Bottom Operation, Proc. of Remotely Operated Vehicles (ROV), 1990, 262–269

    Google Scholar 

  7. R. Cyr, J. Warner, TOAS: Terrain and Obstacle Avoidance Sonar for Autonomous and Remotely Operated Vehicles, Proc. of Remotely Operated Vehicles (ROV), 1987, 324–330

    Google Scholar 

  8. V. J. Hughes, R. J. Welford, Long Range Navigation System for ARUS a fully Autonomous Submersible Vehicle, Proc. of Remotely Operated Vehicles (ROV), 1990, 221–227

    Google Scholar 

  9. J. C. Jalbert, S. G. Chappel, D. R. Blidberg, EAVE III Generic Testbed Autonomous Underwater Vehicle, Sea Technology, 30 (1989) 6, 31–34

    Google Scholar 

  10. J. R. Johnston, A. E. Vigil, Developments in Camera Technology, Proc. of Remotely Operated Vehicles (ROV), 1992, 374–381

    Google Scholar 

  11. D. Langer, M. Hebert, Building Qualitative Elevation Maps from Side Scan Sonar Data for Autonomous Underwater Navigation, IEEE Int. Conf. on Robotics and Automation, 1991, vol. 3, 2478–2483

    Google Scholar 

  12. D. MacKay, Choosing an Underwater TV System, Underwater Systems Design, 13 (1991) 1, 13–25

    Google Scholar 

  13. A. Malinvero, M. H. Edwards, W. B. F. Ryan, Processing of Sea MARC Swath Sonar Data, IEEE Journal of Oceanic Engineering, 15 (1990) 1, 14–23

    Article  Google Scholar 

  14. D. McKeown, The Visual Imaging Requirement of the Next Generation of ROVs, Underwater Technology, 15 (1989) 1, 11–15

    Google Scholar 

  15. J. E. Melegari, N. C. Kelland, The Expanding Role of Underwater Acoustics in the Operation of Undersea Vehicles, Proc. of Remotely Operated Vehicles (ROV), 1987, 300–307

    Google Scholar 

  16. D. Michel, Object Recovery and Site Clearence Using High Resolution Scanning Sonar, Proc. of Remotely Operated Vehicles (ROV), 1987, 321–323

    Google Scholar 

  17. R. Miliner, Ultraschalltechnik, Grundlagen und Anwendungen, Physik Verlag, Weinheim 1987

    Google Scholar 

  18. P. H. Milne, Offshore Oil Applications of Sonar Technology, Marine Technology Society Journal, 20 (1986) 4, 28–37

    Google Scholar 

  19. S. Negahdaripour, A. Shokrollahi, C. H. Yu, Passive Vision Sensing Techniques for Autonomous Undersea Vehicles, Intelligent Autonomous Systems, 1989, 608–618

    Google Scholar 

  20. H. G. Nguyen, P. J. Heckman, A. L. Pai, Real-Time Pattern Recognition for Guidance of an Autonomous Undersea Submersible, IEEE Int. Conf. on Robotics and Automation, 1988, vol. 3, 1767–1770

    Google Scholar 

  21. H. G. Nguyen, P. K. Kaomea, P. J. Heckman, Machine Visual Guidance for an Autonomous Undersea Submersible, Underwater Imaging, Proc of SPIE vol. 980, 1988, 82–89

    Google Scholar 

  22. I. Papadimitriou, Steuerungskonzepte für autonome mobile Unterwasser-Roboter, Fortschritt-Berichte VDI, Reihe 8, Nr. 258, VDI Verlag, Düsseldorf 1991

    Google Scholar 

  23. P. D. Rushfeldt, State-of-the-Art ROV and Control System for Deepwater Pipe Repair, Offshore Technology Conference (OTC), 1987, 101–115

    Google Scholar 

  24. M. P. Shevenell, Survey of Autonomous Imaging, Proc. of Oceans, 1984, 224–228

    Google Scholar 

  25. B. Stieler, Trägheitsnavigation, Stand der Technik und Entwicklungstendenzen, Ortung und Navigation, 28 (1987) 2, 262–289

    Google Scholar 

  26. H. K. Tönshoff, I. Papadimitriou, Control System for Autonomous Mobile Underwater Robots, Proc. of Remotely Operated Vehicles (ROV), 1991, 149–160

    Google Scholar 

  27. H. K. Tönshoff, I. Papadimitriou, R. Zeyn, Multisensoriel Control and Supervision of Autonomous Mobile Underwater Robots, Int. Conf. on Advanced Robotics, 1991, vol. 2, 1824–1827

    Google Scholar 

  28. R. F. Tusting, Enhancement of Undersea Measurement and Vision Systems Using Laser, Proc. of Remotely Operated Vehicles (ROV), 1990, 284–290

    Google Scholar 

  29. M. C. Tyler, Leightweight Doppler Sonar for Submersible Applications, Proc. of Remotely Operated Vehicles (ROV), 1987, 308–311

    Google Scholar 

  30. W. J. Zehner, C. D. Loggins, Selection Criteria for UUV Sonar Systems, Sixth Int. Symp. on Unmanned Untethered Submersible Technology, 1989, 349–358

    Google Scholar 

  31. G. X. Zheng, B. Zheng, A new Laser 3-D Image Information Display Method for ROV, Proc. of Remotely Operated Vehicles (ROV), 1992, 183–188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tönshoff, H.K., Zeyn, R. (1994). Entwicklung eines Sensorsystems zur Führung autonomer mobiler Unterwasser-Roboter. In: Levi, P., Bräunl, T. (eds) Autonome Mobile Systeme 1994. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79267-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79267-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58438-4

  • Online ISBN: 978-3-642-79267-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics