Skip to main content

Curvature Estimation with a DCA neural network

  • Conference paper
Mustererkennung 1995

Part of the book series: Informatik aktuell ((INFORMAT))

  • 184 Accesses

Abstract

Curvature has been identified as an important feature to reconstruct properties like object shape or relative depth from two-dimensional gray scale images [6, 9]. This coincides with the assumption that curvature is processed by a separate channel in human early vision, just like contours or contrast [23, 2, 3]. The process of early vision is assumed to be divided into vision modules [15] that are evaluated independently in almost completely separate pathways [21, 5, 10]. This motivates to study how artificial neural networks can be used to mimic the operation of some of these putative modules. In this contribution we investigate to what extent curvature information can be extracted from an image, only on the basis of the gray scale pixel information. The paper shows that a neural network based on local linear maps LLM can be trained to estimate the local amount and orientation of curvature from only a small patch of grayscale pixel images. The accuracy of this estimation depends on the complexity of the surfaces. Using a recently developed approach of cascaded LLM-networks (DCA), we demonstrate that the performance that can be obtained with a standard LLM-net can be considerably improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. J. Aloimonos and D. Shulman. Integration of Visual Modules — An Extension of the Marr Paradigm. Academic Press, San Diego London, 1989.

    Google Scholar 

  2. A. Dobbins, S.W. Zucker, and M.S. Cynader. Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature, 329:438–441, 1987.

    Article  Google Scholar 

  3. A. Dobbins, S.W. Zucker, and M.S. Cynader. Endstopping and curvature. Nature, 29:1371–1387, 1989.

    Google Scholar 

  4. S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 524–532. Morgan Kaufman Publishers, San Mateo, CA, 1990.

    Google Scholar 

  5. J.J. Gibson. The Perception of the Visual World. Houghton-Mifflin, Boston, MA, 1950.

    Google Scholar 

  6. B.K.P. Horn. Obtaining shape from shading information. In P. H. Winston, editor. The Psychology of Computer Vision. McGraw-Hill, New York, 1975.

    Google Scholar 

  7. B.K.P. Horn. Robot Vision. McGraw-Hill, New York, 1986.

    Google Scholar 

  8. K. Ikeuchi and B.K.P. Horn. Numerical shape from shading and occluding boundaries. Artificial Intelligence, 17:141–184, 1981.

    Article  Google Scholar 

  9. J.J. Koenderink. Solid shape. MIT Press, Cambridge, MA, 1989.

    Google Scholar 

  10. E.H. Land and J.J. McCann. Lightness and retinex theory. J. Opt. Soc. Am., 61:1–11, 1971.

    Article  Google Scholar 

  11. S.R. Lehky and T.J. Sejnowski. Network model of shape-from-shading: neural function arises from both receptive and projective fields. Nature, 333:452–454, 1988.

    Article  Google Scholar 

  12. E. Littmann and H. Ritter. Cascade network architectures. In Proceedings of the International Joint Conference on Neural Networks, volume 11, pages 398–404, Baltimore, MD, 1992.

    Google Scholar 

  13. E. Littmann and H. Ritter. Analysis and apphcations of the direct cascade architecture. Technical Report TR 94–2, Department of Computer Science, Bielefeld University, Bielefeld, FR Germany, 1994.

    Google Scholar 

  14. E. Littmann and H. Ritter. Learning and generalization in cascade network architectures. Accepted for pubUcation in Neural Computation, 1995.

    Google Scholar 

  15. D. Marr. Vision. W.H. Freeman, San Francisco, CA, 1982.

    Google Scholar 

  16. T. Poggio. MIT progress in understanding images. In Proc. Image Understanding Workshop. 1988.

    Google Scholar 

  17. T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247, 1990.

    Google Scholar 

  18. T. Poggio and C. Koch. III-posed problems: from computational theory to analog networks. Proc. Royal Soc. London Biol, 1985.

    Google Scholar 

  19. H. Ritter. Learning with the self-organizing map. In T. Kohonen, K. Makisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks 1, pages 357–364. Elsevier Science Publishers B.V., North Holland, 1991.

    Google Scholar 

  20. H. Ritter, T. Martinetz, and K. Schulten. Neural Computation and Self- Organizing Maps: An Introduction. Addison-Wesley, New York, 1992. (Enghsh and German).

    MATH  Google Scholar 

  21. K. A. Stevens. The visual interpretation of surface contours. Artificial Intelligence, 17:47–75, 1981.

    Article  Google Scholar 

  22. A.N. Tikhonov and V.Y. Arsenin. Solution of III-posed Problems. Winston, Washington, B.C., 1977.

    Google Scholar 

  23. A. Treisman and S. Gormican. Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95:15–48, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Littmann, E., Ritter, H. (1995). Curvature Estimation with a DCA neural network. In: Sagerer, G., Posch, S., Kummert, F. (eds) Mustererkennung 1995. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79980-8_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79980-8_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60293-4

  • Online ISBN: 978-3-642-79980-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics