Skip to main content

Approximation for Finite Capacity Multiqueue Systems

  • Conference paper
Messung, Modellierung und Bewertung von Rechensystemen

Part of the book series: Informatik—Fachberichte ((INFORMATIK,volume 110))

Abstract

In performance investigations of token ring local area networks, switching systems with distributed control etc., the class of polling models, i.e. multiqueue systems with cyclic service is often employed. In this paper, an approximate analysis method for this class of models will be presented, whereby realistic modelling assumptions like the finiteness of queue capacities and nonsymmetrical load conditions are taken into account. The method of imbedded Markov chain is used for the analysis, whereby the special case of Markovian as well as the case of general service time are successively considered. The latter case is analyzed in conjunction with a moment matching approach for the cycle time. The approximation accuracy is validated by means of computer simulations. Numerical results are shown in order to illustrate the accuracy of the calculation method and its dependency on system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.B. Cooper and G. Murray, “Queues served in Cyclic Order”, Bell Syst. Tech. J. 48 (1969) 675–689.

    MathSciNet  MATH  Google Scholar 

  2. R.B. Cooper, “Queues served in Cyclic Order: Waiting Times”, Bell Syst. Tech. J. 49 (1970) 399–413.

    MATH  Google Scholar 

  3. M. Eisenberg, “Two Queues with Changeover Times”, Oper. Res. 19 (1971) 386–401.

    Article  MATH  Google Scholar 

  4. M. Eisenberg, “Queues with Periodic Service and Changeover Times”, Oper. Res. 20 (1972) 440–451.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Hashida, “Analysis of Multiqueue”, Rev. El. Commun. Lab. 20 (1972) 189–199.

    Google Scholar 

  6. O. Hashida, K. Ohara, “Line Accomodation Capacity of a Communication Control Unit”, Rev. El. Commun. Lab. 20 (1972) 231–239.

    Google Scholar 

  7. M. A. Leibowitz, “An Approximate Method for Treating a Class of Multiqueue Problems”, IBM J. Res. Develop. 5 (1961) 204–209.

    MathSciNet  MATH  Google Scholar 

  8. P.J. Kuehn, “Multiqueue Systems with Nonexhaustive Cyclic Service”, Bell Syst. Tech. J. 58 (1979) 671–699.

    MATH  Google Scholar 

  9. W. Bux, “Local-Area Subnetworks: A Performance Comparison”, IEEE Trans. Comm. COM-29 (1981) 1465–1473.

    Google Scholar 

  10. O. J. Boxma, “Two Symmetric Queues with Alternating Service and Switching Times”, Proc. Performance ‘84, Paris, pp. 409–431.

    Google Scholar 

  11. H. Takagi, L. Kleinrock, “Analysis of Polling Systems”, Japan Science Inst. Research Report, 1985.

    Google Scholar 

  12. R.J.T. Morris, Y.T. Wang, “Some Results for Multiqueue Systems with Multiple Cyclic Servers”, Proc. 2nd Int. Symp.on the Performance of Comp. Comm. Systems, Zurich 1984, 245–258.

    Google Scholar 

  13. T. Raith, “Performance Analysis of Multibus Interconnection Networks in Distributed Systems”, Proc. 11th Internat. Teletraffic Congress, Sept. 1985, Kyoto, Japan, paper 4. 2A - 5.

    Google Scholar 

  14. P.J. Kuehn, “Approximate Analysis of General Queueing Networks by Decomposition”, IEEE Trans. Comm. COM-27(1979) 113–126.

    Google Scholar 

  15. P. Tran-Gia, T. Raith, “Multiqueue Systems with Finite Capacity and Non-exhaustive Cyclic Service”, Proc. Internat. Seminar on Computer Networking and Performance Evaluation, Sept. 1985, Tokyo, Japan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tran-Gia, P., Raith, T. (1985). Approximation for Finite Capacity Multiqueue Systems. In: Beilner, H. (eds) Messung, Modellierung und Bewertung von Rechensystemen. Informatik—Fachberichte, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87472-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87472-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15969-8

  • Online ISBN: 978-3-642-87472-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics