Skip to main content

Black-Box Hyperparameter Optimization for Nuclei Segmentation in Prostate Tissue Images

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2019

Zusammenfassung

Segmentation of cell nuclei is essential for analyzing highcontent histological screens. Often, parameters of automatic approaches need to be optimized, which is tedious and difficult to perform manually. We propose a novel hyperparameter optimization framework, which formulates optimization as a combination of candidate sampling and an optimization strategy. We present a clustering based and a deep neural network based pipeline for nuclei segmentation, for which the parameters are optimized using state of the art optimizers as well as a novel optimizer. The pipelines were applied to challenging prostate cancer tissue images. We performed a quantitative evaluation using 28,388 parameter settings. It turned out that the deep neural network outperforms the clustering based pipeline, while the results for different optimizers vary slightly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Wang Y, Du S, Balakrishnan S, et al. Stochastic Zeroth-order Optimization in High Dimensions. arXiv:1710.10551; 2017.

  2. Ramani S, Blu T, Unser M. Monte-carlo SURE: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans Image Process. 2008;17(9):1540-1554.

    Article  MathSciNet  Google Scholar 

  3. Hansen N, Auger A, Ros R, et al.; ACM. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. Proc GECCO. 2010; p. 1689-1696.

    Google Scholar 

  4. Teodoro G, Kurҫ TM, Taveira LF, et al. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines. Bioinformatics. 2016;33(7):1064-1072.

    Google Scholar 

  5. Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine learning algorithms. Proc Adv Neural Inf Process Syst. 2012; p. 2951-2959.

    Google Scholar 

  6. Bergstra J, Yamins D, Cox DD; Citeseer. Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. Proc SciPy. 2013; p. 13-20.

    Google Scholar 

  7. Komer B, Bergstra J, Eliasmith C. Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn. Proc ICML Workshop AutoML. 2014; p. 2825-2830.

    Google Scholar 

  8. Golovin D, Solnik B, Moitra S, et al.; ACM. Google vizier: a service for black-box optimization. Proc SIGKDD. 2017; p. 1487-1495.

    Google Scholar 

  9. Ronneberger O, Fischer P, Brox T; Springer. U-net: convolutional networks for biomedical image segmentation. Proc MICCAI. 2015; p. 234-241.

    Google Scholar 

  10. Hutter F, Hoos HH, Leyton-Brown K; Springer. Sequential model-based optimization for general algorithm configuration. Proc LION. 2011; p. 507-523.

    Google Scholar 

  11. Chen T, Guestrin C; ACM. Xgboost: a scalable tree boosting system. Proc SIGKDD. 2016; p. 785-794.

    Google Scholar 

  12. Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley; 1989.

    Google Scholar 

  13. Parzen E. On estimation of a probability density function and mode. Ann Math Stat. 1962;33(3):1065-1076.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wollmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wollmann, T. et al. (2019). Black-Box Hyperparameter Optimization for Nuclei Segmentation in Prostate Tissue Images. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2019. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25326-4_75

Download citation

Publish with us

Policies and ethics