Zusammenfassung
Existing approaches to modeling the dynamics of brain tumor growth, specifically glioma, employ biologically inspired models of cell diffusion, using image data to estimate the associated parameters. In this work, we propose to learn growth dynamics directly from annotated MR image data, without specifying an explicit model, leveraging recent developments in deep generative models. We further assume that imaging is ambiguous with respect to the underlying disease, which is reflcted in our approach in that it doesn’t predict a single growth estimate but instead estimates a distribution of plausible changes for a given tumor.
Chapter PDF
Similar content being viewed by others
Literatur
Petersen J, Jäger PF, Isensee F, et al. Deep probabilistic modeling of glioma growth. In: MICCAI 2019. vol. 11765 of LNCS. Springer; 2019. p. 806–814.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Petersen, J. et al. (2020). Abstract: Deep Probabilistic Modeling of Glioma Growth. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_48
Download citation
DOI: https://doi.org/10.1007/978-3-658-29267-6_48
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-29266-9
Online ISBN: 978-3-658-29267-6
eBook Packages: Computer Science and Engineering (German Language)