Skip to main content

Learning the Inverse Weighted Radon Transform

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2021

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

X-ray phase-contrast imaging enhances soft-tissue contrast. The measured differential phase signal strength in a Talbot-Lau interferometer is dependent on the object's position within the setup. For large objects, this affects the tomographic reconstruction and leads to artifacts and perturbed phase values. In this paper, we propose a pipeline to learn a filter and additional weights to invert the weighted forward projection. We train and validate the method with a synthetic dataset. We tested our pipeline on the Shepp-Logan phantom, and found that our method suppresses the artifacts and the reconstructed image slices are close to the actual phase values quantitatively and qualitatively. In an ablation study we showed the superiority of our fully optimized pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Maier A, Steidl S, Christlein V, et al. Medical imaging systems: An introductory guide. vol. 11111. Springer; 2018.

    Google Scholar 

  • Pfeiffer F, Weitkamp T, Bunk O, et al. Phase retrieval and differential phasecontrast imaging with low-brilliance X-ray sources. Nat Phys. 2006;2(4):258–261.

    Google Scholar 

  • Engelhardt M, Baumann J, Schuster M, et al. High-resolution differential phase

    Google Scholar 

  • contrast imaging using a magnifying projection geometry with a microfocus X-ray source. Appl Phys Lett. 2007;90(22):224101.

    Google Scholar 

  • Donath T, Chabior M, Pfeiffer F, et al. Inverse geometry for grating-based X-ray phase-contrast imaging. J Appl Phys. 2009;106(5):054703.

    Google Scholar 

  • Chabior M, Schuster M, Schroer C, et al. Grating-based phase-contrast computed tomography of thick samples. Nucl Instrum Methods Phys Res A. 2012;693:138–142.

    Google Scholar 

  • Felsner L, Würfl T, Syben C, et al. Reconstruction of voxels with position- and angle-dependent weightings. In: The 6th Int. Conf. on Image Formation in X-Ray Computed Tomography; 2020. p. 502–505.

    Google Scholar 

  • Maier AK, Syben C, Stimpel B, et al. Learning with known operators reduces maximum error bounds. Nat Mach Intell. 2019;1(8):373–380.

    Google Scholar 

  • Würfl T, Hoffmann M, Christlein V, et al. Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans Med Imaging. 2018;37(6):1454–1463.

    Google Scholar 

  • Syben C, Stimpel B, Roser P, et al. Known operator learning enables constrained projection geometry conversion: Parallel to cone-beam for hybrid MR/X-ray imaging. IEEE Trans Med Imaging. 2020;.

    Google Scholar 

  • Van der Walt S, Schönberger JL, Nunez-Iglesias J, et al. Scikit-image: image processing in python. PeerJ. 2014;2:e453.

    Google Scholar 

  • Shepp LA, Logan BF. The Fourier reconstruction of a head section. IEEE Trans Nucl Sci. 1974;21(3):21–43.

    Google Scholar 

  • Ramachandran GN, Lakshminarayanan AV. Three-dimensional reconstruction from radiographs and electron micrographs: Application of convolutions instead of Fourier transforms. Proc Natl Acad Sci. 1971;68(9):2236–2240.

    Google Scholar 

  • Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Bengio Y, LeCun Y, editors. 3rd Int. Conf. on Learning Representations; 2015. p. 1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roser, P., Felsner, L., Maier, A., Riess, C. (2021). Learning the Inverse Weighted Radon Transform. In: Palm, C., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2021. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33198-6_14

Download citation

Publish with us

Policies and ethics