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Abstract. Continuous protocols for cardiac magnetic resonance imaging
enable sampling of the cardiac anatomy simultaneously resolved into
cardiac phases. To avoid respiration artifacts, associated motion during
the scan has to be compensated for during reconstruction. In this paper,
we propose a sampling adaption to acquire 2-D respiration information
during a continuous scan. Further, we develop a pipeline to extract the
different respiration states from the acquired signals, which are used to
reconstruct data from one respiration phase. Our results show the benefit
of the proposed workflow on the image quality compared to no respiration
compensation, as well as a previous 1-D respiration navigation approach.

1 Introduction

Cardiac magnetic resonance imaging (MRI) is an established tool for the diagno-
sis of various cardiomyopathies [1,2]. For a comprehensive diagnosis, two factors
are essential: First, the anatomy of the heart has to be imaged for the evalua-
tion of different cardiac structures. Second, dynamic imaging, i.e., the resolution
into different cardiac phases, is needed for the evaluation of the cardiac function.
Recent 3-D protocols were proposed for the sampling of dynamic cardiac 3-D vol-
umes [3,4,5]. Most protocols sample data continuously during free-breathing and
multiple cardiac cycles, often combined with incoherent subsampling [4,5]. How-
ever, the permanent respiration motion during scanning can have a substantial
influence on the image quality, yielding severe artifacts. This can be improved by
reconstructing data from only one respiration state. Recent approaches for res-
piration extraction use either additional navigation readouts [6] (which prolong
the scan times), or 1-D self-navigation, where central k-space lines (mainly ori-
entated in the superior-inferior (SI) direction) are processed with, e.g., principal
component analysis (PCA) [5,7]. However, only 1-D central k-space lines might
be insufficient for the extraction of respiration, as it mainly comprises anterior-
posterior (AP) as well as SI motion. Consequently, this motion is not properly
encoded in the 1-D central k-space lines. In this work, we propose an adapted
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Fig. 1. Adaption of the sampling pat-
tern (figure adopted from [8]). Sam-
ples on the phase-encoding plane
are collected continuously on pseudo-
spiral spokes, every t = 1 s the nav-
igation signals are sampled on the
kz = 0, ky = −u/2, ..., 0, ..., u/2 line.

sampling and navigation framework for extracting 2-D respiration motion from
continuous cardiac sequences to reduce the influence of respiration-induced ar-
tifacts. We show the superior performance of our 2-D navigation on the image
quality compared to no respiration navigation and previous 1-D navigation.

2 Method

Our proposed framework uses 2-D navigation signals from the adapted sampling
scheme (Sec. 2.1, Fig. 1) for extracting the different respiration states (Sec. 2.2,
Fig. 2). Readouts from one particular respiration state are jointly reconstructed,
reducing respiration-induced artifacts.

2.1 Sampling pattern

We extended a previously proposed prototypical method for 3-D free-breathing,
continuous, cardiac MRI [5]. Data is collected during multiple cardiac and res-
piration phases. The Cartesian phase encoding (PE) plane is incoherently un-
dersampled with samples on pseudo-spiral spokes, each starting in the k-space
center (Fig. 1). We adapted this scheme to sample 2-D respiration motion infor-
mation: Every t = 1 s, data is sampled on the kz = 0, ky = −u/2, ..., 0, ..., u/2
line, where u is number of samples on one pseudo-spiral spoke. This leads to a
fully sampled k-space center with size u× v, where v is the length of the kx-line,
the remaining positions are zero-filled. The 2-D navigation signals are planes
within the imaged 3-D volume, mainly orientated in the AP and SI direction.
These readouts are simultaneously used for navigation and reconstruction of the
3-D dynamic volumes, avoiding additional scan time for navigation. All acquired
readouts after a navigation signal i and prior to the next navigation signal i+ 1
are considered to have the same motion state as the navigation signal i.

2.2 Navigation motion extraction pipeline

All 2-D navigation signals from single coils are transformed to the spatial domain
with the 2-D inverse Fourier transform (iFT) and are combined with the sum-
of-squares (SoS) resulting in final low-resolutional navigation images, N1, ..., NI ,
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where I is the total number of navigation images. The 2-D respiration mo-
tion in AP and SI direction can be observed there (Fig. 3). For the selection
of one respiration state, following steps are applied: (1) The first navigation
image is selected as reference Nref with R different regions of interest (ROIs)
NrefROI1 , ..., NrefROIR with observable motion. (2) For each ROI the correla-
tion coefficients CC between NrefROI1 , ..., NrefROIR and NROI1 , ..., NROIR in each
N2, ..., NI are calculated, while moving the ROI within a selected search window
on N2, ..., NI . The spatial positions of NROI1 , ..., NROIR in N2, ..., NI with the
highest CC result in the x and y shifts for the two motion directions compared to
the NrefROI1 , ..., NrefROIR , yielding the current motion vector mir = (x̂ir, ŷir)>

for each N2, ..., NI and each NROI1 , ..., NROIR . (3) We assume that each ROI
will mainly contain one direction of motion (e.g., a ROI on the chest wall will
contain mainly AP motion). PCA is applied on all motion vectors from step
(2) to select the dominant 1-D shifts from each ROI, resulting in a combined
mcomb = (x̂irmax

, ŷirmax
)> for each N2, ..., NI , where rmax is the selected ROI

for one particular motion direction (x or y). (4) Different motion states and
the amount of respective navigation images for each state are computed. All
readouts from the state with the most frequent occurence are selected for re-
construction, which is based on a previously proposed prototypical Compressed
Sensing framework combined with spatiotemporal Wavelet regularization [8].

3 Experiments and results

3.1 Experimental setup

We acquired a 3-D free-breathing, continuous in-vivo scan from one volun-
teer (female, 55 years) after written consent was obtained. Data was acquired
with the proposed prototypical sequence in short-axis orientation and balanced
steady-state free precession readouts on a 1.5T scanner (MAGNETOM Aera,
Siemens Healthcare, Erlangen, Germany) with these parameters: Field-of-view:
310×310×86mm, spatial resolution: 1.83mm, flip angle: 46 ◦, echo time: 1.7ms,

Fig. 2. Respiration motion extraction pipeline. Raw navigation signals from sin-
gle coils are reconstructed with the 2-D inverse Fourier transform (iFT) and
sum-of-squares (SoS) coil combination. For motion extraction, correlations be-
tween different ROIs on navigation images are computed. PCA extracts the main
motion values. The cluster with the highest amount of readouts corresponding
to one particular motion state is used for image reconstruction.
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repetition time: 3.3ms, scan time: 5.3min. Cardiac signal from an external ECG
device was used to bin the data into cardiac phases [5]. We selected R = 2 naviga-
tion ROIs, which correspond mainly to AP (green ROI in Fig. 3) and SI motion
(red ROI in Fig. 3). A search window of± 25 pixels in x, y directions onN2, ..., NI

was used. The mcomb was selected with x̂ = 2 (from green ROI with a principal
component coeffiecent of 0.99) and ŷ = 1 (from red ROI with a principal com-
ponent coeffiecent of 0.99) with 39.9 % of all data (108/339 navigation images).
We compared three different reconstructions: (1) Without respiration compen-
sation (No Nav), (2) with 1-D navigation (1-D Nav), with respiration motion
extracted from central 1-D k-space lines [5] (Fig. 3) and (3) with our proposed
2-D navigation (2-D Nav). For the quantitative evaluation, three commonly used
image quality metrics in motion compensation [9] were applied (Tab. 1): (1) His-
togram entropy H, (2) total variation TV and (3) wavelet-based estimation of
the standard deviation of Gaussian noise distribution σNoise [10].

3.2 Results

Figure 4 shows one slice resolved into different cardiac phases from 3-D volumes
reconstructed with different approaches. Our 2-D based navigation shows a visu-
ally sharper image quality compared to the other reconstructions, especially in
the cardiac region (marked with orange box for cardiac phase 2). For all quantita-
tive metrics shown in Tab. 1, the 2-D based navigation approach yields superior
results. The Student’s t-test results confirm that the differences in the image
quality between the approaches are statistically significant (p-value< 0.05).

4 Discussion and conclusion

No respiration compensation yields artifact-corrupted images, which are of lim-
ited diagnostic utility: The myocardial structure (marked with orange box for

Fig. 3. Examples of 1-D lines for extracting 1-D motion from central k-space
lines (left, readouts corresponding to different states are marked with the black
and white line, respectively), and navigation images (right) for extracting 2-D
motion from our proposed 2-D navigation, which result in 1-D projections over
time, mainly orientated in AP and SI directions.
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Table 1. Quantitative image quality metrics for different reconstructions, each
given as µ±σ for the 3-D dataset (48 slices, 20 cardiac phases). No Nav: Without
respiration compensation, 1-D Nav: With 1-D navigation [5], 2-D Nav: With the
proposed 2-D navigation, H: Histogram entropy (lower is better), TV : Total vari-
ation (lower is better), σNoise: Standard deviation of Gaussian noise distribution
(lower is better).

Method Metric (µ± σ), [95 % confidence intervals]

H TV σNoise

No Nav 3.80± 0.11 [3.79, 3.80] 90868± 790 [90817, 90918] 6.17± 1.00 [6.11, 6.24]

1-D Nav 3.77± 0.12 [3.77, 3.78] 90575± 856 [90521, 90629] 5.41± 0.95 [5.35, 5.47]

2-D Nav 3.68± 0.11 [3.67, 3.68] 86197± 1831 [86081, 86313] 4.36± 0.69 [4.31, 4.39]

cardiac phase 2) is heavily disturbed by the permanent chest wall motion (es-
pecially in cardiac phases 2, 14), that manifests as folding artifacts. The recon-
struction based on the 1-D navigation also results in artifact-corrupted images.

No Nav 1-D Nav 2-D Nav |No Nav−2-D Nav |
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Fig. 4. Qualitative results. One slice from the reconstructed 3-D volume (48 slices,
20 cardiac phases) is shown for different cardiac phases (each row). Column
by column: No Nav : Without respiration compensation, 1-D Nav : With 1-D
respiration navigation, 2-D Nav : With 2-D respiration navigation, |No Nav−2-D
Nav |: Difference between reconstructions without navigation and 2-D respiration
navigation.
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Even if 1-D motion is visible in the central 1-D k-space lines (Fig. 3), it can only
represent one motion direction, which is insufficient for respiration. For our sub-
ject, the image quality could only be slightly improved with the 1-D navigation.
Our proposed 2-D navigation yields the visually sharpest image quality. Even if
the subsampling is increased with the 2-D navigation by removing parts of data
for the reconstruction (up to a factor 11.5, compared to max. 4.1 without respi-
ration compensation), the image quality can be greatly improved with data from
only one stable respiration state. This is confirmed by our quantitative analysis,
where the 2-D navigation has significantly superior results in all metrics.

To summarize, we proposed a sampling pattern adaption and a 2-D respi-
ration navigation pipeline that improves image quality compared to previously
proposed 1-D navigation. Using our adapted continuous sampling, the same data
can be used for 2-D navigation and 3-D reconstruction, without introducing the
need for sampling navigation data only. Our approach can be potentially com-
bined with a data-driven cardiac navigation, e.g., [11] without further adaptions
on the sampling, yielding an ECG-free workflow. Future work will deal with
the automatic detection of ROIs for the motion computation, as well as the
application to other protocols, such as multi-contrast sampling [5].
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