Skip to main content

Digital Staining of Mitochondria in Label-free Live-cell Microscopy

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2021

Abstract

Examining specific sub-cellular structures while minimizing cell perturbation is important in the life sciences. Fluorescence labeling and imaging is widely used. With the advancement of deep learning, digital staining routines for label-free analysis have emerged to replace fluorescence imaging. Nonetheless, digital staining of sub-cellular structures such as mitochondria is sub-optimal. This is because the models designed for computer vision are directly applied instead of optimizing them for microscopy data. We propose a new loss function with multiple thresholding steps to promote more effective learning for microscopy data. We demonstrate a deep learning approach to translate the labelfree brightfield images of living cells into equivalent fluorescence images of mitochondria with an average structural similarity of 0.77, thus surpassing the state-of-the-art of 0.7 with L1. We provide insightful examples of unique opportunities by data-driven deep learning-enabled image translations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Samanta S, He Y, Sharma A, et al. Fluorescent probes for nanoscopic imaging of mitochondria. Chem. 2019;5(7):1697–1726.

    Google Scholar 

  2. Swayne TC, Gay AC, Pon LA. Methods cell biol.. vol. 80. Academic Press; 2007.

    Google Scholar 

  3. Chazotte B. Labelng mitochondria with fluorescent dyes for imaging. Cold Spring Harb Protoc. 2009;2009(6).

    Google Scholar 

  4. Kandel ME, Hu C, Kouzehgarani GN, et al. Epi-illumination gradient light interference microscopy for imaging opaque structures. Nat Commun. 2019;10(1):19.

    Google Scholar 

  5. Hoebe R, Van Oven C, Gadella TW, et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat Biotechnol. 2007;25(2):249–253.

    Google Scholar 

  6. Christiansen EM, Yang SJ, Ando DM, et al. In silico labeling: predicting fluorescent labels in unlabeled images. Cell. 2018;173(3):792–803.

    Google Scholar 

  7. Zahedi A, On V, Phandthong R, et al. Deep analysis of mitochondria and cell health using machine learning. Sci Rep. 2018;8(1):115.

    Google Scholar 

  8. Vicar T, Balvan J, Jaros J, et al. Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison. BMC Bioinformatics. 2019;20(1):360.

    Google Scholar 

  9. Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint arXiv:14111784. 2014;.

  10. Ronneberger O, Fischer P, Brox T; Springer. U-net: convolutional networks for biomedical image segmentation. CoRR. 2015; p. 234–241.

    Google Scholar 

  11. Isola P, Zhu JY, Zhou T, et al. Image-to-image translation with conditional adversarial networks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017; p. 5967–5976.

    Google Scholar 

  12. Armanious K, Jiang C, Fischer M, et al. MedGAN: medical image translation using GANs. Comput Med Imaging Graph. 2020;79:101684.

    Google Scholar 

  13. Kotte S, Kumar PR, Injeti SK. An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm. Ain Shams Med J. 2018;9(4):1043–1067.

    Google Scholar 

  14. Ounkomol C, Seshamani S, Maleckar MM, et al. Label-free prediction of threedimensional fluorescence images from transmitted-light microscopy. Nat Methods. 2018;15(11):917–920.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayush Somani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Somani, A. et al. (2021). Digital Staining of Mitochondria in Label-free Live-cell Microscopy. In: Palm, C., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2021. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33198-6_55

Download citation

Publish with us

Policies and ethics