Skip to main content

On Efficient Extraction of Pelvis Region from CT Data

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2021

Part of the book series: Informatik aktuell ((INFORMAT))

  • 1616 Accesses

Abstract

The first step in automated analysis of medical volumetric data is to detect slices, where specific body parts are located. In our project, we aimed to extract the pelvis regionfrom whole-body CT scans. Two deep learning approaches, namely, an unsupervised slice score regressor, and a supervised slice classification method, were evaluated on a relatively small-sized dataset. The result comparison showed that both methods could detect the region of interest with accuracy above 93%. Although the straightforward classification method delivered more accurate results (accuracy of 99%), sometimes it tended to output discontinuous regions, which can be solved by combination of both approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yan Z, Zhan Y, Peng Z, et al. Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans Med Imaging. 2016;35(5):1332–1343.

    Google Scholar 

  2. Khoshelham K. Extending generalized hough transform to detect 3d objects in laser range data. In: ISPRS Workshop on Laser Scanning and SilviLaser 2007, 12-14 September 2007, Espoo, Finland. International Society for Photogrammetry and Remote Sensing; 2007. .

    Google Scholar 

  3. Seim H, Kainmueller D, Heller M, et al. Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. VCBM. 2008;8:93–100.

    Google Scholar 

  4. Roth HR, Lee CT, Shin H, et al. Anatomy-specific classification of medical images using deep convolutional nets. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI); 2015. p. 101–104.

    Google Scholar 

  5. Yan K, Lu L, Summers RM. Unsupervised body part regression via spatially self-ordering convolutional neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE; 2018. p. 1022–1025.

    Google Scholar 

  6. Furlow B. Whole-body computed tomography trauma imaging. Radiol Technol. 2017;89(2):159CT–180CT.

    Google Scholar 

  7. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556. 2014;.

  8. Yan L, Lu L, Summers RM;. https://github.com/rsummers11/.

  9. Implementation in Keras by Gabriel Chartrand;. https://github.com/Gabsha/ssbr.

  10. IRCAD Dataset;. https://www.ircad.fr/research/3dircadb/.

  11. DenOtter TD, Schubert J. Houns_eld unit. In: StatPearls [Internet]. StatPearls Publishing; 2019. .

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Ivanovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanovska, T., Paulus, A.O., Martin, R., Panahi, B., Schilling, A. (2021). On Efficient Extraction of Pelvis Region from CT Data. In: Palm, C., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2021. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33198-6_65

Download citation

Publish with us

Policies and ethics