Skip to main content

Interpretation magnetresonanz-tomographischer (MRT) Daten mit KI

  • Chapter
  • First Online:
Künstliche Intelligenz im Gesundheitswesen
  • 16k Accesses

Zusammenfassung

Die rasante Entwicklung der Magnetresonanz-Tomografie sowie Fortschritte in der Verfügbarkeit leistungsfähiger Rechentechnik haben in den letzten Jahren neue Perspektiven für die Nutzung radiologischer Bilddaten als Biomarker eröffnet. Dadurch sind bildgestützte Verfahren möglich geworden, die Aussagen über den Krankheitsverlauf und die Wirkung verschiedener Therapieformen erlauben (Radiomics). Ausgehend von klassischen Methoden der Mustererkennung werden die Grundprinzipien und Einsatzmöglichkeiten der KI-basierten Bildinterpretation von MRT-Daten erläutert. Hierzu gehören einfache und fortgeschrittene Klassifikatoren, künstliche neuronale Netze, Convolutional Neural Networks sowie deren Verwendung für Radiomics Anwendungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    (MRI[Title/Abstract]) AND ((artificial intelligence[Title/Abstract]) OR (pattern recognition[Title/Abstract]) OR (artificial neural network[Title/Abstract]) OR (machine learning[Title/Abstract]) OR (computer vision[Title/Abstract]))

Literatur

  • Abdolmaleki, P., Buadu, L. D., & Naderimansh, H. (2001). Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer letters, 171(10), 183–191.

    Article  Google Scholar 

  • Battineni, G., Chintalapudi, N., Amenta, F., & Traini, E. (2020). A Comprehensive machine-learning model applied to Magnetic Resonance Imaging (MRI) to Predict Alzheimer’s Disease (AD) in older subjects. Journal of Clinical Medicine, 9(7), 2146.

    Article  Google Scholar 

  • Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones, E., & Lungren, M. P. (2018). Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Medicine, 5(11), 1–19.

    Google Scholar 

  • Billot, B., Bocchetta, M., Todd, E., Dalca, A. V., Rohrer, J. D., & Iglesias, J. E. (2020). Automated segmentation of the hypothalamus and associated subunits in brain MRI. NeuroImage, 23(8), 117287.

    Google Scholar 

  • Boer, R., Vrooman, H. A., Lijn, F., Vernooij, M. W., Ikram, M. A., Lugt, A., & Niessen, W. J. (2009). White matter lesion extension to automatic brain tissue segmentation on MRI. NeuroImage, 45(5), 1151–1161.

    Article  Google Scholar 

  • Carré, A., Klausner, G., Edjlali, M., Lerousseau, M., Briend-Diop, J., Sun, R., & Robert, C. (2020). Standardization of brain MR images across machines and protocols: Bridging the gap for MRI-based radiomics. Scientific Reports, 10(1), 1–15.

    Article  Google Scholar 

  • Cuocolo, R., Ugga, L., Solari, D., Corvino, S., D’Amico, A., Russo, D., & Elefante, A. (2020). Prediction of pituitary adenoma surgical consistency: Radiomic data mining and machine learning on T2-weighted MRI. Neuroradiology. https://doi.org/10.1007/s00234-020-02502-z.

  • Ehricke, H.-H., & Laub, G. (1990). Gewebecharakterisierung in der dreidimensionalen Kernspintomographie mit Methoden der Texturanalyse. In G. H. Schneider, E. Vogler, & K. Kocever (Hrsg.), 6. Grazer Radiologisches Symposium (S. 502–506). Blackwell.

    Google Scholar 

  • Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804.

    Article  Google Scholar 

  • Hu, Q., Whitney, H. M., & Giger, M. L. (2020a). A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Scientific Reports, 10(1), 1–11.

    Article  Google Scholar 

  • Hu, Q., Whitney, H. M., & Giger, M. L. (2020b). Radiomics methodology for breast cancer diagnosis using multiparametric magnetic resonance imaging. Journal of medical imaging, 7(4), 1–15.

    Article  Google Scholar 

  • Lambin, P., Leijenaar, R. T., Deist, T. M., Peerlings, J., De Jong, E. E., & Van Timmeren, J. (2017). Radiomics: The bridge between medical imaging and personalized medicine. Nature reviews Clinical oncology, 14(12), 749–762.

    Article  Google Scholar 

  • Lao, Z., Shen, D., Liu, D., Jawad, A. F., Melhem, E. R., Launer, L. J., & Davatzikos, C. (2008). Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Academic Radiology, 15(3), 300–313.

    Article  Google Scholar 

  • Menhardt, W. (1990). MR tissue characterization using iconic fuzzy sets. In H. P. Higer & G. Bielke (Hrsg.), Tissue characterization in MR imaging (S. 145–148). Springer Verlag.

    Chapter  Google Scholar 

  • Nagarajan, M. B., Huber, M. B., Schlossbauer, T., Leinsinger, G., Krol, A., & Wismüller, A. (2013). Classification of small lesions in breast MRI: Evaluating the role of dynamically extracted texture features through feature selection. Journal of Medical and Biological Engineering, 33(1), 59–68.

    Article  Google Scholar 

  • Pisapia, J. M., Akbari, H., Rozycki, M., Thawani, J. P., Storm, P. B., & Avery, D. C. (2020). Predicting pediatric optic pathway glioma progression using advanced magnetic resonance image analysis and machine learning. Neuro-Oncology Advances, 2(8), 1–10.

    Google Scholar 

  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, & A. F. Frangi (Hrsg.), Medical image computing and computer-assisted intervention – MICCAI 2015 (S. 234–241). Springer International Publishing.

    Chapter  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(10), 533–536.

    Article  Google Scholar 

  • Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., & Ahuja, C. K. (2012). A dual neural network ensemble approach for multiclass brain tumor classification. International journal for numerical methods in biomedical engineering, 28(11), 1107–1120.

    Article  Google Scholar 

  • Spinks, R., Magnotta, V. A., Andreasen, N. C., Albright, K. C., Ziebell, S., Nopoulos, P., & Cassell, M. (2002). Manual and automated measurement of the whole thalamus and mediodorsal nucleus using magnetic resonance imaging. NeuroImage, 17(2), 631–642.

    Article  Google Scholar 

  • Steenwijk, M. D., Pouwels, P. J., Daams, M., Van Dalen, J. W., Caan, M. W., Richard, E., & Vrenken, H. (2013). Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). NeuroImage: Clinical, 3, 462–469.

    Google Scholar 

  • Ushinsky, A., Bardis, M., Glavis-Bloom, J., Uchio, E., Chantaduly, C., Nguyentat, M., & Houshyar, R. (2020). A 3D/2D Hybrid U-Net CNN approach to prostate organ segmentation of mpMRI. American journal of roentgenology. https://doi.org/10.2214/AJR.19.22168.

  • Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., & Bottani, S. (2020). Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical image analysis, 63(7), 101694.

    Google Scholar 

  • Weygandt, M., Hackmack, K., Pfüller, C., Bellmann-Strobl, J., Paul, F., Zipp, F., & Haynes, J. D. (2011). MRI pattern recognition in multiple sclerosis normal-appearing brain areas. PLoS ONE, 6(6). https://doi.org/10.1371/journal.pone.0021138.

  • Wikipedia. (2020). Mustererkennung --- Wikipedia, Die freie Enzyklopädie. https://de.wikipedia.org/w/index.php?title=Mustererkennung&oldid=197317773. Zugegriffen: 30. Sept. 2020.

  • Yuan, G., Liu, Y., Huang, W., & Hu, B. (2020). Differentiating grade in breast invasive ductal carcinoma using texture analysis of MRI. Computational and Mathematical Methods in Medicine, 2020. https://doi.org/10.1155/2020/6913418.

  • Zhang, X., Fujita, H., Kanematsu, M., Zhou, X., Hara, T., Kato, H., & Hoshi, H. (2005). Improving the classification of cirrhotic liver by using texture features. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, S. 867–870.

    Google Scholar 

  • Zhen, S. H., Cheng, M., Tao, Y. B., Wang, Y. F., Juengpanich, S., Jiang, Z. Y., & Cai, X. J. (2020). Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Frontiers in Oncology, 10(5), 1–14.

    Google Scholar 

  • Zhou, Z., Li, S., Qin, G., Folkert, M., Jiang, S., & Wang, J. (2019). Multi-objective-based radiomic feature selection for lesion malignancy classification. IEEE Journal of Biomedical and Health Informatics, 24(1), 194–204.

    Article  Google Scholar 

  • Zhuang, X., Chen, C., Liu, Z., Zhang, L., Zhou, X., Cheng, M., & Wang, K. (2020). Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy. Translational oncology, 13(11), 100831.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Heino Ehricke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehricke, HH. (2022). Interpretation magnetresonanz-tomographischer (MRT) Daten mit KI. In: Pfannstiel, M.A. (eds) Künstliche Intelligenz im Gesundheitswesen. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-33597-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-33597-7_30

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-33596-0

  • Online ISBN: 978-3-658-33597-7

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics