Skip to main content

A Keypoint Detection and Description Network Based on the Vessel Structure for Multi-modal Retinal Image Registration

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2022

Zusammenfassung

Ophthalmological imaging utilizes different imaging systems, such as color fundus, infrared, fluorescein angiography, optical coherence tomography (OCT) or OCT angiography. Multiple images with different modalities or acquisition times are often analyzed for the diagnosis of retinal diseases. Automatically aligning the vessel structures in the images by means of multi-modal registration can support the ophthalmologists in their work. Our method uses a convolutional neural network to extract features of the vessel structure in multi-modal retinal images. We jointly train a keypoint detection and description network on small patches using a classification and a cross-modal descriptor loss function and apply the network to the full image size in the test phase. Our method demonstrates the best registration performance on our and a public multi-modal dataset in comparison to competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Chen J, Tian J, Lee N, Zheng J, Smith RT, Laine AF. A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans Biomed Eng. 2010;57(7):1707–18.

    Google Scholar 

  2. Lee J, Liu P, Cheng J, Fu H. A deep step pattern representation for multimodal retinal image registration. Proc IEEE ICCV. 2019:5076–85.

    Google Scholar 

  3. Truong P, Apostolopoulos S, Mosinska A, Stucky S, Ciller C, Zanet SD. GLAMpoints: greedily learned accurate match points. Proc IEEE ICCV. 2019:10732–41.

    Google Scholar 

  4. Wang Y, Zhang J, Cavichini M, Bartsch DUG, Freeman WR, Nguyen TQ et al. Robust content-adaptive global registration for multimodal retinal images using weakly supervised deep-learning framework. IEEE Trans Image Process. 2021;30:3167–78.

    Google Scholar 

  5. DeTone D, Malisiewicz T, Rabinovich A. SuperPoint: self-supervised interest point detection and description. Proc IEEE CVPR. 2018.

    Google Scholar 

  6. Sindel A, Maier A, Christlein V. CraquelureNet: matching the crack structure in historical paintings for multi-modal image registration. Proc IEEE ICIP. 2021:994–8.

    Google Scholar 

  7. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE CVPR. 2016:770–8.

    Google Scholar 

  8. Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM. 1981;24(6):381–95.

    Google Scholar 

  9. Hajeb Mohammad Alipour S, Rabbani H, Akhlaghi MR. Diabetic retinopathy grading by digital curvelet transform. Comput Math Methods Med. 2012;2021:761901.

    Google Scholar 

  10. Jau YY, Zhu R, Su H, Chandraker M. Deep keypoint-based camera pose estimation with geometric constraints. Proc IEEE IROS. 2020:4950–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Sindel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sindel, A. et al. (2022). A Keypoint Detection and Description Network Based on the Vessel Structure for Multi-modal Retinal Image Registration. In: Maier-Hein, K., Deserno, T.M., Handels, H., Maier, A., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-36932-3_12

Download citation

Publish with us

Policies and ethics