Skip to main content

Robust Liver Segmentation with Deep Learning Across DCE-MRI Contrast Phases

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2022

Zusammenfassung

Fully automatic liver segmentation is important for the planning of liver interventions and decision support. In patients with HCC, dynamic-contrast enhanced MRI is particularly relevant. Previouswork has focused on liver segmentation in the late hepatobiliary contrast phase, which may not always be available in heterogeneous data from clinical routine. In this contribution, we demonstrate the training of a convolutional neural network across contrast phases of DCEMRI, that is on par with a specialized late-phase network (mean Dice score 0.96) but in addition is more robust to other contrast phase images compared with the specialized network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Bilic P et al. The liver tumor segmentation benchmark (LiTS). arXiv e-prints. 2019. arXiv:1901.04056.

    Google Scholar 

  2. Roberts LR, Sirlin CB, Zaiem F, Almasri J, Prokop LJ, Heimbach JK et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology. 2018;67(1):401–21.

    Google Scholar 

  3. Chlebus G, Schenk A. Automatic liver and tumor segmentation in late-phase MRI using fully convolutional neural networks. Procs CURAC. 2018:195–200.

    Google Scholar 

  4. Winther H, Hundt C, Ringe KI, Wacker FK, Schmidt B, Jürgens J et al. A 3D deep neural network for liver volumetry in 3T contrast-enhanced MRI. RoFo. 2021;193(3):305–14.

    Google Scholar 

  5. Strehlow J, Spahr N, Rühaak J, Laue H, Abolmaali N, Preusser T et al. Landmark-based evaluation of a deformable motion correction for DCE-MRI of the liver. Int J Comput Assist Radiol Surg. 2018;13(4):597–606.

    Google Scholar 

  6. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci. 2015;9351:234–41.

    Google Scholar 

  7. Chlebus G, Schenk A, Hahn HK, Ginneken B van, Meine H. Robust segmentation models using an uncertainty slice sampling based annotation workflow. arXiv e-prints. 2021. arXiv:2109.14879.

    Google Scholar 

  8. Chollet F et al. Keras. https://keras.io. 2015.

  9. Moltz JH, Hänsch A, Lassen-Schmidt B, Haas B, Genghi A, Schreier J et al. Learning a loss function for segmentation: a feasibility study. Procs ISBI. 2020:957–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Hänsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hänsch, A. et al. (2022). Robust Liver Segmentation with Deep Learning Across DCE-MRI Contrast Phases. In: Maier-Hein, K., Deserno, T.M., Handels, H., Maier, A., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-36932-3_3

Download citation

Publish with us

Policies and ethics