
Few-shot Unsupervised Domain Adaptation for
Multi-modal Cardiac Image Segmentation

Mingxuan Gu1(�), Sulaiman Vesal1, Ronak Kosti1, Andreas Maier1

1Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen,
Germany

mingxuan.gu@fau.de

Abstract. Unsupervised domain adaptation (UDA) methods intend to reduce the
gap between source and target domains by using unlabeled target domain and
labeled source domain data, however, in the medical domain, target domain data
may not always be easily available, and acquiring new samples is generally time-
consuming. This restricts the development of UDA methods for new domains. In
this paper, we explore the potential of UDA in a more challenging while realistic
scenario where only one unlabeled target patient sample is available. We call
it Few-shot Unsupervised Domain adaptation (FUDA). We first generate target-
style images from source images and explore diverse target styles from a single
target patient with Random Adaptive Instance Normalization (RAIN). Then, a
segmentation network is trained in a supervised manner with the generated target
images. Our experiments demonstrate that FUDA improves the segmentation
performance by 0.33 of Dice score on the target domain compared with the
baseline, and it also gives 0.28 of Dice score improvement in a more rigorous
one-shot setting. Our code is available at https://github.com/MingxuanGu/
Few-shot-UDA.

1 Introduction

As manual contouring of medical images is tedious and time-consuming, automatic
medical image segmentation is more desirable [1]. While deep learning methods often
suffer from performance degradation when a domain gap is observed between training
(source) and testing (target) data. UDA methods tackle this problem by reducing the
domain gap with a variety of techniques, for example, discrepancy reduction [2], ad-
versarial learning [3], image translation [4], etc. These methods are conditioned on the
availability of a large amount of target data which, however, is quite scarce.

In this work, we consider a more realistic and practical scenario where we still have
sufficient labeled source data, while we only have one unlabeled target data for training.
To this end, a style transfer method called Random Adaptive Instance Normalization
(RAIN) [5] is used to generate diverse target-style images from a single target patient
data. Then, a segmentation module can be trained in a supervised manner with generated
images. Our contributions are: (1) we explore the potential of FUDA for multi-modal
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Fig. 1. Overview of the proposed FUDA segmentation framework. RAIN is first pre-trained with
𝑥𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (bSSFP) and 𝑥𝑠𝑡 𝑦𝑙𝑒 (T2). Then during training of the segmentation module, stylized
target images will be generated by RAIN with source images and 𝜀 generated from target image(s).
After that, the segmentation module can be trained using the source and stylized images. The 𝜀 is
iteratively updated to generate more difficult stylized images.

cardiac CMR segmentation and it shows better performance compared with its baseline
model and other recent UDA methods, (2) we extend our method to one-shot learning
and demonstrate the possibility of FUDA with only one slice of target data available.

2 Materials and methods

2.1 Dataset

We assess the proposed FUDA on MS-CMRSeg [6] 2019 challenge dataset, which
consists of 45 short-axis bSSFP, T2-weighted and LGE scans from patients diagnosed
with cardiomyopathy. The ground-truth contours are generated by two experts and
include right ventricle (RV) cavity, left ventricle (LV) cavity, and myocardium (Myo)
region. Only affine transformation (rotation, translation, shearing, etc.) is applied and
the sequences are normalized using min-max normalization. Then, the sequences are
center-cropped to 224 × 224 pixels to have only region-of-interest (ROIs) areas.

2.2 Problem statement

In UDA for semantic segmentation, a set of labeled data in source domain D𝑠 (𝑥𝑠 , 𝑦𝑠) is
given, where 𝑥𝑠 represents one sample, and 𝑦𝑠 the corresponding label in D𝑠 . Whereas
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Fig. 2. Qualitative results of RAIN on bSSFP → LGE. The first column shows a LGE axial slice
as the style image. The first row shows the bSSFP images as the content images, the second row
shows the corresponding stylized LGE images.

for target domain (D𝑡 ) only unlabeled target images (𝑥𝑡 ) are given. The goal is to
improve the performance of the segmentation by reducing the distribution gap between
the source and target domain. In our case, we consider only one unlabeled target patient
data (𝑥𝑡 ) being available.

2.3 RAIN Module

RAIN is developed on the basis of Adaptive Instance Normalization (AdaIN) [7]. AdaIN
has an encoder-decoder architecture. It generates stylized images which have the ap-
pearance of the style image while preserving the structure of the content images by
re-normalizing the features of content images with Eq. 1:

𝐴𝑑𝑎𝐼𝑁 ( 𝑓𝑐 , 𝑓𝑠) = 𝜎( 𝑓𝑠) (
𝑓𝑐 − 𝜇( 𝑓𝑐)
𝜎( 𝑓𝑐)

) + 𝜇( 𝑓𝑠), (1)

where 𝑓𝑐 , 𝑓𝑠 are the latent features of the content and style image, 𝜇(.) and 𝜎(.) denote
channel-wise mean and standard deviation. To achieve realistic image transfer, a content
loss L𝑐 and a style loss L𝑠 [7] is employed.

RAIN takes advantage of the style transfer in AdaIN and involves a style variational
auto-encoder (VAE) in between the encoder and the decoder. The style-VAE is composed
of an encoder 𝐸𝑣𝑎𝑒 and a decoder 𝐷𝑣𝑎𝑒. 𝐸𝑣𝑎𝑒 encodes 𝜇( 𝑓𝑠) ⊕ 𝜎( 𝑓𝑠) to 𝑁 (𝜓, 𝜉),
where ⊕ denotes concatenation, and 𝐷𝑣𝑎𝑒 aims to reconstruct the original style with�𝜇( 𝑓𝑠) ⊕ 𝜎( 𝑓𝑠) = 𝐷𝑣𝑎𝑒 (𝜀), where 𝜀 ∼ 𝑁 (𝜓, 𝜉). Kullback-Leibler (KL) divergence loss
is applied to enforce 𝑁 (𝜓, 𝜉) to be normal distributed. Furthermore, L2 loss is applied
between 𝜇( 𝑓𝑠) ⊕ 𝜎( 𝑓𝑠) and �𝜇( 𝑓𝑠) ⊕ 𝜎( 𝑓𝑠) to force identity reconstruction L𝑅𝑒𝑐 .

Thus, the overall loss function to train RAIN can be formulated as L𝑅𝐴𝐼 𝑁 =

L𝑐 + 𝜆𝑠L𝑠 + 𝜆𝑘𝐿L𝐾𝐿 + 𝜆𝑅𝑒𝑐L𝑅𝑒𝑐 where 𝜆𝑠 , 𝜆𝐾𝐿 and 𝜆𝑅𝑒𝑐 denote the weights for the
losses.

2.4 Few-shot UDA for cardiac MRI segmentation

The proposed FUDA framework is constructed based on ASM [5] implementation and
is shown in Fig. 1. To train the segmentation module and explore styles from a single
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Fig. 3. A visual comparison of segmentation output results produced by different methods for
test LGE images under one and few-shot learning settings. The first two rows show the results for
few-shot models and the last two rows are for one-shot respectively. LV is shown in yellow, Myo
in brown and RV in light-blue colors.

target image, we first generate the latent distribution N(𝜓, 𝜉) from the input image 𝑥𝑡 .
Then we sample an 𝜀0 from N(𝜓, 𝜉). After that, we can generate stylized images 𝑥𝑡

from any source image 𝑥𝑠 . Then the style transfer can be formulated as:

𝑥𝑡 = 𝐷 (𝐴𝑑𝑎𝐼𝑁 (𝐸 (𝑥𝑠), 𝐷𝑣𝑎𝑒 (𝜀))) (2)

Furthermore, the segmentation module can be trained in a supervised manner with 𝑥𝑠

and the corresponding 𝑥𝑡 .
We train the segmentation module with a combination of cross-entropy loss (CE)

and jaccard distance loss (JD) as L𝑠𝑒𝑔 = L𝐶𝐸 + L𝐽𝐷 . To enforce the segmentation
module to produce domain invariant features between 𝑥𝑠 and the corresponding 𝑥𝑡 ,
L𝑐𝑜𝑛 = | |𝑧𝑠 − 𝑧𝑡 | |2 is applied as a consistency loss, where 𝑧𝑠/𝑡 are the latent features
of the source and the corresponding generated target image from the bottleneck layer of
the segmentation module. Then the overall loss function for the segmentation module
is:

L𝑆 = L𝑠𝑒𝑔 + 𝜆L𝑐𝑜𝑛 (3)

where 𝜆 is the weight of L𝑐𝑜𝑛. Finally, to generate more diverse and increasingly difficult
target images , 𝜀 is updated in the direction that makes the segmentation module perform
worse on segmentation with:
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Tab. 1. Dice coefficient (DC) and Hausdorff distance (HD) measures for the proposed FUDA
together with baseline (W/o UDA) method, inter-observer study and the performance of the two
successful UDA methods AdaptSeg [8] and ADVENT [3]. Baseline is trained with bSSFP images
and tested directly on LGE images. For few-shot learning, we take the whole LGE squence of
patient 10 as the training target data. For one-shot learning, we only use slice 13 of patient 10 as
the training target data. Best results are shown in bold.

DC (↑) HD [mm] (↓)
Method Data Myo LV RV AVG Myo LV RV AVG
W/o UDA N/A 0.24 0.40 0.27 0.30 31.7 31.0 45.0 35.9
AdaptSeg Few 0.39 0.63 0.58 0.53 39.1 28.7 25.6 31.1
ADVENT Few 0.39 0.59 0.52 0.50 38.4 35.3 37.9 37.2
Proposd Few 0.46 0.77 0.65 0.63 24.5 13.7 22.4 20.2
AdaptSeg One 0.45 0.65 0.52 0.54 32.3 34.3 36.4 34.3
ADVENT One 0.37 0.61 0.51 0.50 42.7 26.9 35.0 34.9
Proposd One 0.39 0.73 0.63 0.58 36.2 19.0 25.6 26.9
Observer N/A 0.76 0.88 0.81 0.82 12.0 14.3 21.5 15.9

𝜀𝑖+1 = 𝜀𝑖 + 𝛼O𝜀𝑖L𝑠𝑒𝑔 (𝑥𝑡 , 𝑦𝑠) (4)

where 𝑖 is the iteration number, 𝑦𝑠 represents the corresponding source label for 𝑥𝑡 and
𝛼 denotes the learning rate.

2.5 Training

The training process has two stages. First, we use bSSFP-MRI as content images and
T2-weighted-MRI as style images to pretrain the RAIN module. Since it does not involve
any target images (LGE), this process makes it convenient to train RAIN anytime before
training the segmentation module. In the second stage, the RAIN model is frozen, and
we employ Dilated-Residual UNet (DR-UNet) [9] as the segmentation module. We
first pretrain the DR-UNet with bSSFP images and the generated LGE-style images
in a supervised manner for 40-50𝑘 iterations. Then the model is trained together with
𝜀 being iteratively updated for another 40-50𝑘 iterations. We used stochastic gradient
descent (SGD) with a momentum of 0.9 and a weight decay of 5𝑒 − 4 as the optimizer.
We empirically set the hyper-parameters of 𝜆𝑠 = 5, 𝜆𝐾𝐿 = 1, 𝜆𝑅𝑒𝑐 = 5 and 𝜆 = 2𝑒 − 3.
The proposed method is trained and tested on one Geforce 1080Ti GPU. The training
of RAIN and segmentation module takes 2 hours and 21 hours respectively. Overall
inference takes 23 seconds in average for each patient.

3 Results

Fig. 2 shows the qualitative results of the pretrained RAIN. We can observe that RAIN
successfully captures the features of target images. Tab. 1 summarizes the quantitative
results of different methods. Baseline method achieved the lowest average volumetric
Dice (0.30) and an HD (35.9 mm). With a few-shot UDA setting, our proposed method
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achieved the best overall Dice (0.63) and the best lowest HD (20.2 mm). Subsequently,
we demonstrate the results for one-shot UDA, and our proposed method achieved the
highest Dice (0.58) and the lowest HD (26.9 mm). Fig. 3 illustrates qualitative examples
of different segmentation approaches. Compared with other methods, the proposed
method is able to produce more complete and precise segmentation maps.

4 Discussion

In this work, we presented a few-shot UDA (FUDA) for multi-modal CMR image seg-
mentation while restricting the experiments in a more challenging yet realistic scenario
where only one target sample is available. By comparing the proposed method with
other approaches under the same settings, we show that FUDA highly reduced the do-
main gap with only a few target slices. We also demonstrated that the proposed few-shot
method produces promising results with the more rigorous one-shot setting. We find for
conventional UDA methods like AdaptSeg and ADVENT, performance on one-shot and
few-shot settings only has a slight difference. This can be attributed to the fact that the
slices of one patient only have a small distribution shift, hence the knowledge learned by
the model from target slices of one patient is limited. While for FUDA, the model has the
ability to explore unseen styles of the target images, hence more data provided results
in more diverse target styles. Consequently, better segmentation performance could be
achieved. Furthermore, we believe there is still room to improve the quality of the seg-
mentation prediction. As a result, in the future, we will explore feasible techniques like
contrastive learning and attention to improve the performance of the proposed FUDA.
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