Zusammenfassung
Unsupervised domain adaptation (UDA) methods intend to reduce the gap between source and target domains by using unlabeled target domain and labeled source domain data, however, in the medical domain, target domain data may not always be easily available, and acquiring new samples is generally timeconsuming. This restricts the development of UDA methods for new domains. In this paper, we explore the potential of UDA in a more challenging while realistic scenario where only one unlabeled target patient sample is available. We call it Few-shot Unsupervised Domain adaptation (FUDA). We first generate targetstyle images from source images and explore diverse target styles from a single target patient with Random Adaptive Instance Normalization (RAIN). Then, a segmentation network is trained in a supervised manner with the generated target images. Our experiments demonstrate that FUDA improves the segmentation performance by 0.33 of Dice score on the target domain compared with the baseline, and it also gives 0.28 of Dice score improvement in a more rigorous one-shot setting. Our code is available at https://github.com/MingxuanGu/ Few-shot-UDA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Literatur
Kurzendorfer T, Forman C, Schmidt M, Tillmanns C, Maier A, Brost A. Fully automatic segmentation of left ventricular anatomy in 3-D LGE-MRI. Comput Med Imaging Graph. 2017;59:13–27.
Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola AJ. A kernel method for the twosample- problem. Advances in neural information processing systems. 2007:513–20.
Vu T, Jain H, Bucher M, Cord M, Pérez P. ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. CVPR. 2019:2512–21.
Zhu J, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. ICCV. 2017:2242–51.
Luo Y, Liu P, Guan T, Yu J, Yang Y. Adversarial style mining for one-shot unsupervised domain adaptation. Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020:20612–23.
Zhuang X. Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans Pattern Anal Mach Intell. 2019:1–1.
Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization. ICCV. 2017:1510–9.
Tsai Y, Hung W, Schulter S, Sohn K, Yang M, Chandraker M. Learning to adapt structured output space for semantic segmentation. CVPR. 2018:7472–81.
Vesal S, Ravikumar N, Maier A. Automated multi-sequence cardiac MRI segmentation using supervised domain adaptation. STACOM. 2020:300–8.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Gu, M., Vesal, S., Kosti, R., Maier, A. (2022). Few-shot Unsupervised Domain Adaptation for Multi-modal Cardiac Image Segmentation. In: Maier-Hein, K., Deserno, T.M., Handels, H., Maier, A., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-36932-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-658-36932-3_5
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-36931-6
Online ISBN: 978-3-658-36932-3
eBook Packages: Computer Science and Engineering (German Language)