Skip to main content

Few-shot Unsupervised Domain Adaptation for Multi-modal Cardiac Image Segmentation

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2022

Part of the book series: Informatik aktuell ((INFORMAT))

Zusammenfassung

Unsupervised domain adaptation (UDA) methods intend to reduce the gap between source and target domains by using unlabeled target domain and labeled source domain data, however, in the medical domain, target domain data may not always be easily available, and acquiring new samples is generally timeconsuming. This restricts the development of UDA methods for new domains. In this paper, we explore the potential of UDA in a more challenging while realistic scenario where only one unlabeled target patient sample is available. We call it Few-shot Unsupervised Domain adaptation (FUDA). We first generate targetstyle images from source images and explore diverse target styles from a single target patient with Random Adaptive Instance Normalization (RAIN). Then, a segmentation network is trained in a supervised manner with the generated target images. Our experiments demonstrate that FUDA improves the segmentation performance by 0.33 of Dice score on the target domain compared with the baseline, and it also gives 0.28 of Dice score improvement in a more rigorous one-shot setting. Our code is available at https://github.com/MingxuanGu/ Few-shot-UDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Kurzendorfer T, Forman C, Schmidt M, Tillmanns C, Maier A, Brost A. Fully automatic segmentation of left ventricular anatomy in 3-D LGE-MRI. Comput Med Imaging Graph. 2017;59:13–27.

    Google Scholar 

  2. Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola AJ. A kernel method for the twosample- problem. Advances in neural information processing systems. 2007:513–20.

    Google Scholar 

  3. Vu T, Jain H, Bucher M, Cord M, Pérez P. ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. CVPR. 2019:2512–21.

    Google Scholar 

  4. Zhu J, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. ICCV. 2017:2242–51.

    Google Scholar 

  5. Luo Y, Liu P, Guan T, Yu J, Yang Y. Adversarial style mining for one-shot unsupervised domain adaptation. Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020:20612–23.

    Google Scholar 

  6. Zhuang X. Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans Pattern Anal Mach Intell. 2019:1–1.

    Google Scholar 

  7. Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization. ICCV. 2017:1510–9.

    Google Scholar 

  8. Tsai Y, Hung W, Schulter S, Sohn K, Yang M, Chandraker M. Learning to adapt structured output space for semantic segmentation. CVPR. 2018:7472–81.

    Google Scholar 

  9. Vesal S, Ravikumar N, Maier A. Automated multi-sequence cardiac MRI segmentation using supervised domain adaptation. STACOM. 2020:300–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxuan Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, M., Vesal, S., Kosti, R., Maier, A. (2022). Few-shot Unsupervised Domain Adaptation for Multi-modal Cardiac Image Segmentation. In: Maier-Hein, K., Deserno, T.M., Handels, H., Maier, A., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-36932-3_5

Download citation

Publish with us

Policies and ethics