Skip to main content

A Vesselsegmentation-based CycleGAN for Unpaired Multi-modal Retinal Image Synthesis

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2023 (BVM 2023)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

Abstract

Unpaired image-to-image translation of retinal images can efficiently increase the training dataset for deep-learning-based multi-modal retinal registration methods. Our method integrates a vessel segmentation network into the image-to-image translation task by extending the CycleGAN framework. The segmentation network is inserted prior to aUNet vision transformer generator network and serves as a shared representation between both domains. We reformulate the original identity loss to learn the direct mapping between the vessel segmentation and the real image. Additionally, we add a segmentation loss termto ensure shared vessel locations between fake and real images. In the experiments, our method shows a visually realistic look and preserves the vessel structures, which is a prerequisite for generating multi-modal training data for image registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proc IEEE CVPR 2017. 2017.

    Google Scholar 

  2. Kamran SA, Hossain KF, Tavakkoli A, Zuckerbrod SL, Baker SA. VTGAN: semi-supervised retinal image synthesis and disease prediction using vision transformers. 2021 IEEE/CVF ICCVW. 2021:3228–38.

    Google Scholar 

  3. Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycleconsistent adversarial networks. Proc IEEE ICCV 2017. 2017:2242–51.

    Google Scholar 

  4. Li K, Yu L, Wang S, Heng PA. Unsupervised retina image synthesis via disentangled representation learning. SASHIMI 2019. 2019:32–41.

    Google Scholar 

  5. Cai Z, Xin J, Wu J, Liu S, Zuo W, Zheng N. Triple multi-scale adversarial learning with self-attention and quality loss for unpaired fundus fluorescein angiography synthesis. IEEE EMBC 2020. 2020:1592–5.

    Google Scholar 

  6. Liang N, Yuan L,Wen X, Xu H,Wang J. End-to-end retina image synthesis based on CGAN using class feature loss and improved retinal detail loss. IEEE Access. 2022;10:83125–37.

    Google Scholar 

  7. Niu Y, Gu L, Zhao Y, Lu F. Explainable diabetic retinopathy detection and retinal image generation. IEEE J Biomed Health Inform. 2022;26(1):44–55.

    Google Scholar 

  8. Torbunov D, Huang Y,Yu H, Huang J,Yoo S, LinMet al.UVCGAN:UNet vision transformer cycle-consistentGANfor unpaired image-to-image translation. Proc IEEE/CVFWACV2023. 2023:702–12.

    Google Scholar 

  9. Hajeb Mohammad Alipour S, Rabbani H, Akhlaghi MR. Diabetic retinopathy grading by digital curvelet transform. Comput Math Methods Med. 2012;2021:761901.

    Google Scholar 

  10. Sindel A, Hohberger B, Maier A, Christlein V. Multi-modal retinal image registration using a keypoint-based vessel structure aligning network. MICCAI 2022. 2022:108–18.

    Google Scholar 

  11. Budai A, Bock R, Maier A, Hornegger J, Michelson G. Robust vessel segmentation in fundus images. Int J Biomed Imaging. 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Sindel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sindel, A., Maier, A., Christlein, V. (2023). A Vesselsegmentation-based CycleGAN for Unpaired Multi-modal Retinal Image Synthesis. In: Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2023. BVM 2023. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_11

Download citation

Publish with us

Policies and ethics