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Abstract. Unpaired image-to-image translation of retinal images can effi-
ciently increase the training dataset for deep-learning-based multi-modal
retinal registration methods. Our method integrates a vessel segmenta-
tion network into the image-to-image translation task by extending the
CycleGAN framework. The segmentation network is inserted prior to a
UNet vision transformer generator network and serves as a shared rep-
resentation between both domains. We reformulate the original identity
loss to learn the direct mapping between the vessel segmentation and
the real image. Additionally, we add a segmentation loss term to ensure
shared vessel locations between fake and real images. In the experiments,
our method shows a visually realistic look and preserves the vessel struc-
tures, which is a prerequisite for generating multi-modal training data
for image registration.

1 Introduction

Recent deep learning methods for multi-modal medical image registration require
a large amount of training data. Since it is difficult and tedious to obtain precise
ground truth from real data, image-to-image translation methods are effective
means to synthetically augment multi-modal datasets. In ophthalmology, differ-
ent imaging systems, such as color fundus (CF), fluorescein angiography (FA),
and optical coherence tomography angiography (OCTA) are used for the diag-
nosis of retinal diseases. Our aim is to generate synthetic multi-modal pairs that
can be used to train registration methods in a self-supervised manner. For that
the position and shape of the vessels should be preserved by the image-to-image
translation method, but the texture and style should be transferred to the other
modality. Here, we concentrate on the image-to-image translation between CF
and FA images. In CF the vessels are depicted in dark and in FA in light, but
by both modalities the fovea is depicted in dark and the optic cup and disc are
depicted in light, which needs to be considered by the translation methods.

Conditional generative adversarial networks (cGANs) were explored in lit-
erature for the image-to-image translation of CF and FA images. In case of
aligned multi-modal images, Pix2Pix [1] based approaches can be used to learn
a direct 1-to-1 mapping between both modalities. In this regard, VTGAN [2] is
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Fig. 1. Our unpaired image-to-image translation method based on the retinal
vessel segmentation in multi-modal fundus images.

introduced for closely but not perfectly aligned CF-FA image pairs, which uses
a coarse and a fine generator with attention blocks and a vision transformer as
discriminator network. CycleGAN [3] based approaches learn a direct image-to-
image translation for unpaired images. For the CF-FA translation task, Li et
al. [4] enriches the CycleGAN with structure and appearance encoder networks
which are inserted prior to the generator networks and Cai et al. [5] extends the
CycleGAN with multi-scale generator and discriminator networks and a quality-
aware loss at feature level. In contrast, we extend the CycleGAN by including
the vessel segmentation as a shared representation between both domains. There
exist a bunch of approaches that generate CF images from extracted vessel seg-
mentations. For instance, the cGAN by Liang et al. [6] adds a class feature
loss for diabetic retinopathy grading and a retinal detail loss which is a com-
bination of the reconstruction loss between real and fake image and perceptual
loss using a specific layer from the pretrained VGG-19 network. Niu et al. [7]
includes pathology specific descriptors into the cGAN to generate CF images
with specific pathological features. The real and synthetic images are compared
using perceptual and severity losses. By integrating the vessel segmentation into
the CycleGAN, we tackle to reduce the domain gap of the vessels between both
modalities.

In this paper, we propose VesselCycleGAN, a cGAN based approach for
unpaired retinal image-to-image translation based on the vessel segmentation of
CF and FA images using cycle consistency. We extend the CycleGAN pipeline
by inserting a vessel segmentation UNet before the generator network, which
we equip with a UNet vision transformer [8]. With the vessel segmentation
network, we modify the identity loss to learn the translation from the vessel
segmentation to the real image and we add a segmentation loss to preserve the
same vessel structures in the real and generated images and apply our method
to two datasets.
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2 Materials and methods

2.1 VesselCycleGAN for unpaired retinal image-to-image translation

We incorporate a vessel segmentation network (V) into the CycleGAN [3] frame-
work, as shown in Figure 1, which we place in front of the generator networks,
such that those do not learn the direct mapping between the two domains, but
the mapping from the vessel segmentation to the particular domain. Cycle-
GANs are conditional generative adversarial networks, consisting of two genera-
tor GA/B and two discriminator networks DA/B , that learn the image-to-image
translation between unpaired images from two domains A/B by using adversarial
loss, cycle-consistency and identity-consistency losses [3]. The cycle-consistency
loss LcycA minimizes the difference between the real image A and its reconstruc-

tion Â after passing through the cycle of applying both GB and GA, and here
in our case V , GB , V , and GA:

LcycA(A) = λA||A−GA(V (GB(V (A))))||1. (1)

Using the identity-consistency loss LidtA, GA originally learns the identity map-

ping of GA(A)
!
= A, however, in our modified CycleGAN this becomes:

LidtA(A) = λAλidt||A−GA(V (A))||1, (2)

where GA learns the aligned one-way image translation task of vessel segmenta-
tion A to real A. Additionally, we compute the Dice loss between the segmenta-
tion of the real A and fake B. The role of DA/B is as in the normal CycleGAN

to distinguish unpaired real images A/B from fake images Ã/B̃ generated using
GA(V (B)) or GB(V (A)). As generator network we employ the UNet-ViT [8]
which is a four layer UNet (D = 48) with a pixel-wise vision transformer bot-
tleneck (with 12 transform encoder blocks). As discriminator network we use
the PatchGAN [1] and for the vessel segmentation network a four layer UNet
(D = 16), which we pretrained for the vessel segmentation task.

2.2 Retinal datasets

We train and test our synthesis method using the CF-FA dataset [9] which
consists of 59 pairs of color fundus (CF, 576× 720) and fluorescein angiography
(FA, 576 × 720) images from controls (29 image pairs) and from patients with
diabetic retinopathy (30 pairs). We split the image pairs into train: 35, val: 10,
and test: 14, with equally distributed healthy and non-healthy eyes. For each
training image, we extract nine 512× 512 patches, which are randomly cropped
to 448 × 448. For the validation and test set, we directly extract up to nine
448 × 448 patches for each image. This results per modality into train: 315,
val: 90 and test: 120 image patches. Since the original image pairs are not
aligned, we register the images of the test set (prior to patch extraction) using
KPVSA-Net [10].
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Secondly, we use the HR fundus dataset [11] which consists of CF images
and manual vessel segmentations. To train the vessel segmentation UNet, we
use the color and green channel of the fundus images in two resolutions: the
center 768 × 768 region and a downsized version by a factor of 4 to have a
similar image size as the CF-FA dataset. During training, we randomly extract
512×512 patches on the fly from the 108 training and 36 validation images. For
the image translation task, we use 81 484× 484 patches from the CF images of
the test set without the ground truth vessel segmentations.

Fig. 2. FA synthesis results and vessel segmentation overlays (vessels segmented
by our UNet).

Fig. 3. CF synthesis results and vessel segmentation overlays (vessels segmented
by our UNet).

Fig. 4. FA synthesis results of the HRF dataset (vessels segmented by our UNet).
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Table 1. Quantitative evaluation for FA and CF synthesis using the CF-FA test
images. LPIPS and KID are computed between fake B and registered real B;
Dice between the vessels of fake B and real A. Methods with * were trained using
registered images.

A-to-B CF-to-FA FA-to-CF

Metrics LPIPS ↓ KID ↓ Dice ↑ LPIPS ↓ KID ↓ Dice ↑
Pix2Pix* (ResNet9) 0.3478 0.0104 0.7615 0.3371 0.0227 0.7264

VTGAN* 0.3731 0.0383 0.8035 - - -

CycleGAN (ResNet9) 0.4296 0.0388 0.2471 0.3511 0.0182 0.3550

VesselCycleGAN (ResNet9 w/o seg) 0.3893 0.0322 0.8798 0.3507 0.0211 0.8458

VesselCycleGAN (w/o seg) 0.3652 0.0158 0.8471 0.3503 0.0227 0.8567

VesselCycleGAN 0.3685 0.0163 0.9534 0.3329 0.0148 0.9419

Table 2. Quantitative evaluation for FA synthesis for the HRF test images using
the models trained on the CF-FA dataset. For KID, real FAs are from the CF-FA
dataset, since there are none in the HRF dataset. Methods with * are trained
using registered CF-FA images.

Metrics Pix2Pix* VTGAN* CycleGAN VesselCycleGAN

KID ↓ (unaligned fake - real FA) 0.0295 0.2010 0.0580 0.0515

Dice ↑ (fake FA - real CF) 0.6943 0.3211 0.2502 0.9439

2.3 Experimental details

Prior to the training of our retinal synthesis network, we train the vessel seg-
mentation UNet on the augmented HR fundus dataset by using equally weighted
binary cross-entropy and Dice loss for 800 epochs with early stopping, Adam op-
timizer, a learning rate η = 2 · 10−4, linear decay of η after 50 epochs, and batch
size of 2. Then, we train the generator and discriminator networks of our retina
synthesis GAN using Adam solver with a learning rate of η = 2 · 10−4 for 600
epochs with early stopping, a batch size of 1, λA/B = 100, λidt = 1, λseg = 1.
For both tasks, we use online data augmentation (color jittering, horizontal flip-
ping, rotation, and cropping). We compare our method with CycleGAN [3] and
Pix2Pix [1] (both: G using ResNet encoder with 9 blocks with instance nor-
malization), and with the VTGAN [2]. Pix2Pix and VTGAN require aligned
training data, hence we registered our training and validation image pairs using
KPVSA-Net [10]. For our method and CycleGAN, we use unaligned data with
randomly sampled patches within the same class (healthy/unhealthy).

3 Results

Table 1 summarizes the quantitative results for the CF-to-FA and FA-to-CF task
using similarity (LPIPS, KID) and Dice metrics. For the FA synthesis, Pix2Pix
obtained the best LPIPS and KID scores, but has only a relatively low Dice
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score of 0.76. Our VesselCycleGAN achieves a bit lower similarity scores, but the
highest Dice score of 0.95 and is superior to VTGAN and the default CycleGAN.
For the CF synthesis task, our VessselCycleGAN achieves the best LPIPS, KID,
and Dice scores. Pix2Pix here only achieves the second best LPIPS score. For
both synthesis tasks, the Dice scores of CycleGAN are very low, indicating that
the vessel positions have not been preserved in the synthetic image. Moreover, we
tested different settings for our VesselCycleGAN to show the advantage of adding
the segmentation loss (gain of up to 10 % Dice score) and by using the UNet-ViT
instead of the ResNet9 generator network. The qualitative results in Figure 2
and 3 reflect the findings. The structures in the synthetic images generated
by VesselCycleGAN and Pix2Pix demonstrate visual similar structures to the
real images. In the vessel segmentation overlays, deviating vessels between the
content and generated image are marked in red (missed vessels) and cyan (added
vessels). Our VesselCycleGAN has the highest overlap in the vessel structure
with the content image. Pix2Pix and VTGAN show some small misalignment in
the vessel details, as they learn a direct mapping between the domains from the
registered data, which can show some small deformations in the vessel structure.
Further, we tested the transferability of the trained models for CF images of the
HRF dataset, where no ground truth FA images exist. In Figure 4, the synthetic
image of VesselCycleGAN depicts the fine structures, the result of Pix2Pix is
a bit blurry, very blurry for CycleGAN while VTGAN was not able to obtain
a realistic result. Numerically, the KID between the FA images from the CF-
FA dataset and the generated FA images of the CF HRF images in Table 2,
was best for Pix2Pix and second best for VesselCycleGAN. The Dice score for
VesselCycleGAN is close the CF-FA dataset, while the competing methods have
lower or very low results.

4 Discussion

We relax the unpaired image-to-image translation of multi-modal fundus images
to direct mappings from the vessel segmentation to the other modality within
the CycleGAN pipeline. Our method, which is trained with unpaired images,
learns the modality specific visual patterns and preserves the vessel locations, and
thus can be used to augment training data for multi-modal retinal registration
methods. As future work, our vessel-based approach could be extended by also
including optical disc segmentations and further methods to control the synthesis
of pathological structures could be investigated.
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