Skip to main content

Taming Detection Transformers for Medical Object Detection

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2023 (BVM 2023)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

Abstract

The accurate detection of suspicious regions in medical images is an error-prone and time-consuming process required by many routinely performed diagnostic procedures. To support clinicians during this difficult task, several automated solutions were proposed relying on complex methods with many hyperparameters. In this study, we investigate the feasibility of detection transformer (DETR) models for volumetric medical object detection. In contrast to previous works, these models directly predict a set of objects without relying on the design of anchors or manual heuristics such as non-maximum-suppression to detect objects. We show by conducting extensive experiments with three models, namely DETR, Conditional DETR, and DINO DETR on four data sets (CADA, RibFrac, KiTS19, and LIDC) that these set prediction models can perform on par with or even better than currently existing methods. DINO DETR, the best-performing model in our experiments demonstrates this by outperforming a strong anchorbased one-stage detector, Retina U-Net, on three out of four data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumgartner M, Jäger PF, Isensee F, Maier-Hein KH. NnDetection: a self-configuring method for medical object detection. Med Image Comput Comput Assist Interv. Springer, 2021:530–9.

    Google Scholar 

  2. Jaeger PF, Kohl SA, Bickelhaupt S, Isensee F, Kuder TA, Schlemmer HP et al. Retina U-Net: embarrassingly simple exploitation of segmentation supervision for medical object detection. ML4H Workshop. PMLR. 2020:171–83.

    Google Scholar 

  3. Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. Comput Vis ECCV. Springer, 2020:213–29.

    Google Scholar 

  4. Meng D, Chen X, Fan Z, Zeng G, Li H, Yuan Y et al. Conditional DETR for fast training convergence. Proc IEEE Int Conf Comput Vis. 2021:3631–40.

    Google Scholar 

  5. Zhang H, Li F, Liu S, Zhang L, Su H, Zhu J et al. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. 2022.

    Google Scholar 

  6. Wittmann B, Navarro F, Shit S, Menze B. Focused decoding enables 3D anatomical detection by transformers. 2022.

    Google Scholar 

  7. Ivantsits M, Goubergrits L, Kuhnigk JM, Huellebrand M, Bruening J, Kossen T et al. Detection and analysis of cerebral aneurysms based on X-ray rotational angiography-the CADA 2020 challenge. Med Image Anal. 2022;77:102333.

    Google Scholar 

  8. Jin L, Yang J, Kuang K, Ni B, Gao Y, Sun Y et al. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of FracNet. EBioMedicine. 2020;62.

    Google Scholar 

  9. Heller N, Sathianathen N, Kalapara A,Walczak E, Moore K, Kaluzniak H et al. The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. 2019.

    Google Scholar 

  10. Armato III SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38(2):915–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Baumgartner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ickler, M.K., Baumgartner, M., Roy, S., Wald, T., Maier-Hein, K.H. (2023). Taming Detection Transformers for Medical Object Detection. In: Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2023. BVM 2023. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_39

Download citation

Publish with us

Policies and ethics