Abstract
Estimating the position of an intervention needle is an important ability in computer-assisted interventions. Currently, such pose estimations rely either on radiation-intensive CT imaging or need additional optical markers which add overhead to the clinical workflow. We propose a novel deep-learning-based technique for pose estimation of interventional tools which relies on detecting visible features on the tool itself without additional markers.We also propose a novel and fast pipeline for creating vast amounts of robustly labeled and markerless ground truth data for training such neural networks. Initial evaluations suggest that with needle base and needle tip localization errors of about 1 and 4 cm, Our approach can yield a search corridor that can be used to find the needle in a low-dose CT image, reducing radiation exposure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for computer vision: a brief review. Comput Intell Neurosci. 2018;2018:7068349.
Fan Z, Zhu Y, He Y, Sun Q, Liu H, He J. Deep learning on monocular object pose detection and tracking: a comprehensive overview. ACM Comput. Surv. 2022;55(4).
A. Geiger, P. Lenz, R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. Proc IEEE CVPR. 2012:3354–61.
Hodan T, Haluza P, Obdrzalek S, Matas J, Lourakis M, Zabulis X. T-LESS: an RGB-D dataset for 6D pose estimation of texture-less objects. Proc IEEE WACV. IEEE, 2017.
Xiang Y, Schmidt T, Narayanan V, Fox D. Posecnn: a convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199. 2017.
Hodan T, Michel F, Brachmann E, Kehl W, GlentBuch A, Kraft D et al. Bop: benchmark for 6d object pose estimation. Proc ECCV. 2018:19–34.
Marion P, Florence PR, Manuelli L, Tedrake R. Label fusion: a pipeline for generating ground truth labels for real rgbd data of cluttered scenes. 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018:3235–42.
Liu X, Jonschkowski R, Angelova A, Konolige K. KeyPose: multi-view 3D labeling and keypoint estimation for transparent objects. Proc IEEE CVPR. IEEE, 2020.
Hinterstoisser S, Lepetit V, Ilic S, Holzer S, Bradski G, Konolige K et al. Model based training, detection and pose estimation of Texture-Less 3D objects in heavily cluttered scenes. Computer Vision – ACCV 2012. Ed. by Lee KM, Matsushita Y, Rehg JM, Hu Z. (Springer- Link Bücher). Berlin, Heidelberg: Springer, 2013:548–62.
Brachmann E, Krull A, Michel F, Gumhold S, Shotton J, Rother C. Learning 6D object pose estimation using 3D object coordinates. Proc ECCV. Cham, 2014:536–51.
Wang H, Sridhar S, Huang J, Valentin J, Song S, Guibas LJ. Normalized object coordinate space for category-level 6d object pose and size estimation. Proc IEEE CVPR. 2019:2642–51.
Ernst P, Hille G, Hansen C, Tönnies K, Rak M. A CNN-Based framework for statistical assessment of spinal shape and curvature in whole-Body MRI images of large populations. Springer, Cham, 2019:3–11.
Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-Jiménez MJ. Automatic generation and detection of highly reliable fiducial markers under occlusion. PatternRecognit. 2014;47(6):2280–92.
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Proc MICCAI. 2015:234–41.
Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M et al. Searching for mobilenetv3. Proc IEEE CVPR. 2019:1314–24.
Tan M, Le Q. Efficientnetv2: smaller models and faster training. International conference on machine learning. PMLR. 2021:10096–106.
Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S. A convnet for the 2020s. Proc IEEE CVPR. 2022:11976–86.
Loshchilov I, Hutter F. Decoupled weight decay regularization. arXiv:1711.05101. 2017.
Bradski G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools. 2000.
Gumus K, Keating B, White N, Andrews-Shigaki B, Armstrong B, Maclaren J et al. Comparison of optical and MR-based tracking. Magn Reson Med. 2015;74(3):894–902.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Gulamhussene, G., Spiegel, J., Das, A., Rak, M., Hansen, C. (2023). Deep Learning-based Marker-less Pose Estimation of Interventional Tools using Surrogate Keypoints. In: Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2023. BVM 2023. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_63
Download citation
DOI: https://doi.org/10.1007/978-3-658-41657-7_63
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-41656-0
Online ISBN: 978-3-658-41657-7
eBook Packages: Computer Science and Engineering (German Language)