Skip to main content

Deep Learning-based Marker-less Pose Estimation of Interventional Tools using Surrogate Keypoints

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2023 (BVM 2023)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 857 Accesses

Abstract

Estimating the position of an intervention needle is an important ability in computer-assisted interventions. Currently, such pose estimations rely either on radiation-intensive CT imaging or need additional optical markers which add overhead to the clinical workflow. We propose a novel deep-learning-based technique for pose estimation of interventional tools which relies on detecting visible features on the tool itself without additional markers.We also propose a novel and fast pipeline for creating vast amounts of robustly labeled and markerless ground truth data for training such neural networks. Initial evaluations suggest that with needle base and needle tip localization errors of about 1 and 4 cm, Our approach can yield a search corridor that can be used to find the needle in a low-dose CT image, reducing radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for computer vision: a brief review. Comput Intell Neurosci. 2018;2018:7068349.

    Google Scholar 

  2. Fan Z, Zhu Y, He Y, Sun Q, Liu H, He J. Deep learning on monocular object pose detection and tracking: a comprehensive overview. ACM Comput. Surv. 2022;55(4).

    Google Scholar 

  3. A. Geiger, P. Lenz, R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. Proc IEEE CVPR. 2012:3354–61.

    Google Scholar 

  4. Hodan T, Haluza P, Obdrzalek S, Matas J, Lourakis M, Zabulis X. T-LESS: an RGB-D dataset for 6D pose estimation of texture-less objects. Proc IEEE WACV. IEEE, 2017.

    Google Scholar 

  5. Xiang Y, Schmidt T, Narayanan V, Fox D. Posecnn: a convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199. 2017.

  6. Hodan T, Michel F, Brachmann E, Kehl W, GlentBuch A, Kraft D et al. Bop: benchmark for 6d object pose estimation. Proc ECCV. 2018:19–34.

    Google Scholar 

  7. Marion P, Florence PR, Manuelli L, Tedrake R. Label fusion: a pipeline for generating ground truth labels for real rgbd data of cluttered scenes. 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018:3235–42.

    Google Scholar 

  8. Liu X, Jonschkowski R, Angelova A, Konolige K. KeyPose: multi-view 3D labeling and keypoint estimation for transparent objects. Proc IEEE CVPR. IEEE, 2020.

    Google Scholar 

  9. Hinterstoisser S, Lepetit V, Ilic S, Holzer S, Bradski G, Konolige K et al. Model based training, detection and pose estimation of Texture-Less 3D objects in heavily cluttered scenes. Computer Vision – ACCV 2012. Ed. by Lee KM, Matsushita Y, Rehg JM, Hu Z. (Springer- Link Bücher). Berlin, Heidelberg: Springer, 2013:548–62.

    Google Scholar 

  10. Brachmann E, Krull A, Michel F, Gumhold S, Shotton J, Rother C. Learning 6D object pose estimation using 3D object coordinates. Proc ECCV. Cham, 2014:536–51.

    Google Scholar 

  11. Wang H, Sridhar S, Huang J, Valentin J, Song S, Guibas LJ. Normalized object coordinate space for category-level 6d object pose and size estimation. Proc IEEE CVPR. 2019:2642–51.

    Google Scholar 

  12. Ernst P, Hille G, Hansen C, Tönnies K, Rak M. A CNN-Based framework for statistical assessment of spinal shape and curvature in whole-Body MRI images of large populations. Springer, Cham, 2019:3–11.

    Google Scholar 

  13. Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-Jiménez MJ. Automatic generation and detection of highly reliable fiducial markers under occlusion. PatternRecognit. 2014;47(6):2280–92.

    Google Scholar 

  14. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Proc MICCAI. 2015:234–41.

    Google Scholar 

  15. Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M et al. Searching for mobilenetv3. Proc IEEE CVPR. 2019:1314–24.

    Google Scholar 

  16. Tan M, Le Q. Efficientnetv2: smaller models and faster training. International conference on machine learning. PMLR. 2021:10096–106.

    Google Scholar 

  17. Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S. A convnet for the 2020s. Proc IEEE CVPR. 2022:11976–86.

    Google Scholar 

  18. Loshchilov I, Hutter F. Decoupled weight decay regularization. arXiv:1711.05101. 2017.

  19. Bradski G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools. 2000.

    Google Scholar 

  20. Gumus K, Keating B, White N, Andrews-Shigaki B, Armstrong B, Maclaren J et al. Comparison of optical and MR-based tracking. Magn Reson Med. 2015;74(3):894–902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gulamhussene, G., Spiegel, J., Das, A., Rak, M., Hansen, C. (2023). Deep Learning-based Marker-less Pose Estimation of Interventional Tools using Surrogate Keypoints. In: Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2023. BVM 2023. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_63

Download citation

Publish with us

Policies and ethics