Skip to main content

Cross-modality Training Approach for CT Super-resolution Network

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2023 (BVM 2023)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 814 Accesses

Abstract

In this work, we propose a U-Net-based super-resolution neural network, SRU-Net, to create emulated high spatial resolution (eHR) CT images from low spatial resolution (LR) CT images. As resolution could be defined by the modulation transfer function in CT reconstruction, we propose the novel approach based on CT reconstruction kernels to create realistic multi-detector CT (MDCT) synthetic LR images from high-resolution cone-beam CT (CBCT) scans. Keeping a constant sampling grid size of 0.20 × 0.20mm2, we reconstruct two types of MDCT-like LR images and one corresponding HR image from the same CBCT raw data and train two models respectively. We validated the performance of the trained models on unseen LR CBCT images. We then applied the trained network to MDCT images. Mean squared error, structural similarity index measures and peak signal-to-noise ratio of two models show significant improvements (p < 0.001) in the eHR images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barbosa Jr EJM, Gefter WB, Ghesu FC, Liu S, Mailhe B, Mansoor A et al. Automated detection and quantification of COVID-19 airspace disease on chest radiographs: a novel approach achieving expert radiologist-level performance using a deep convolutional neural network trained on digital reconstructed radiographs from computed tomography-derived ground truth. Invest Radiol. 2021;56(8):471–9.

    Google Scholar 

  2. Umehara K, Ota J, Ishida T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J Digit Imaging. 2018;31(4):441–50.

    Google Scholar 

  3. Park J, Hwang D, Kim KY, Kang SK, Kim YK, Lee JS. Computed tomography superresolution using deep convolutional neural network. Phys Med Biol. 2018;63(14):145011.

    Google Scholar 

  4. Yu H, Liu D, Shi H, Yu H, Wang Z, Wang X et al. Computed tomography super-resolution using convolutional neural networks. Conf Proc IEEE Int Conf Signal Image Process Appl. IEEE. 2017:3944–8.

    Google Scholar 

  5. Parker JA, Kenyon RV, Troxel DE. Comparison of interpolating methods for image resampling. IEEE Trans Med Imaging. 1983;2(1):31–9.

    Google Scholar 

  6. Hirahara D, Takaya E, Kadowaki M, Kobayashi Y, Ueda T. Effect of the pixel interpolation method for downsampling medical images on deep learning accuracy. J. comput. commun. 2021;9(11):150–6.

    Google Scholar 

  7. Grunz JP, Weng AM, Gietzen CH, Veyhl-Wichmann M, Pennig L, Kunz A et al. Evaluation of ultra-high-resolution cone-beam CT prototype of twin robotic radiography system for cadaveric wrist imaging. Acad Radiol. 2021;28(10):e314–e322.

    Google Scholar 

  8. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Med Image Comput Comput Assist Interv. Springer. 2015:234–41.

    Google Scholar 

  9. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G et al. PyTorch: an imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32. Ed. byWallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R. Curran Associates, Inc., 2019:8024–35.

    Google Scholar 

  10. Peng C, Zhou SK, Chellappa R. DA-VSR: domain adaptable volumetric super-resolution for medical images. Med Image Comput Comput Assist Interv. Springer. 2021:75–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Yan Ryana Fok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fok, W.Y.R. et al. (2023). Cross-modality Training Approach for CT Super-resolution Network. In: Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2023. BVM 2023. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_66

Download citation

Publish with us

Policies and ethics