Skip to main content

Abstracting Volumetric Medical Images with Sparse Keypoints for Efficient Geometric Segmentation of Lung Fissures with a Graph CNN

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 309 Accesses

Abstract

Volumetric image segmentation often relies on voxel-wise classification using 3D convolutional neural networks (CNNs). However, 3D CNNs are inefficient for detecting thin structures that make up a tiny fraction of the entire image volume. We propose a geometric deep learning framework that leverages the representation of the image as a keypoint (KP) cloud and segments it with a graph convolutional network (GCN). From the sparse point segmentations, 3D meshes of the objects are reconstructed to obtain a dense surface. The method is evaluated for the lung fissure segmentation task on two public data sets of thorax CT images and compared to the nnU-Net as the current state-of-the-art 3D CNNbased method. Our method achieves fast inference times through the sparsity of the point cloud representation while maintaining accuracy. We measure a 34× speed-up at 1.5× the nnU-Net’s error with Förstner KPs and a 6× speed-up at 1.3× error with pre-segmentation KPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sofranik RM, Gross BH, Spizarny DL. Radiology of the pleural fissures. Clin Imaging. 1992;16(4):221–229.

    Google Scholar 

  2. Isensee F, Jäger PF, Kohl SAA, Petersen J, Maier-Hein KH. Automated design of deep learning methods for biomedical image segmentation. Nat Methods. 2021;18(2):203–211.

    Google Scholar 

  3. Fischer M, Neher P, Schüffler P, Xiao S, Ulrich C, Muckenhuber A et al. Enhanced diagnostic fidelity in pathology whole slide image compression via deep learning. Mach Learn Med Imaging. 2023.

    Google Scholar 

  4. Balsiger F, Soom Y, Scheidegger O, Reyes M. Learning shape representation on sparse point clouds for volumetric image segmentation. Proc MICCAI. Springer, 2019:273–281.

    Google Scholar 

  5. Wickramasinghe U, Remelli E, Knott G, Fua P. Voxel2Mesh: 3D mesh model generation from volumetric data. Proc MICCAI. Springer, 2020:299–308.

    Google Scholar 

  6. Heinrich MP, Handels H, Simpson IJA. Estimating large lung motion in COPD patients by symmetric regularised correspondence fields. Proc MICCAI. Springer, 2015:338–345.

    Google Scholar 

  7. Wiemker R, BülowT, Blaffert T.Unsupervised extraction of the pulmonary interlobar fissures from high resolution thoracic CT data. Int Congr Ser. 2005;1281:1121–1126.

    Google Scholar 

  8. Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M et al. Searching for MobileNetV3. 2019;(arXiv:1905.02244).

  9. Heinrich MP, Jenkinson M, Papież BW, Brady SM, Schnabel JA. Towards realtime multimodal fusion for image-guided interventions using self-similarities. Proc MICCAI. Springer, 2013:187–194.

    Google Scholar 

  10. Kazhdan M, Hoppe H. Screened poisson surface reconstruction. ACM Trans Graph. 2013;32(3):1–13.

    Google Scholar 

  11. Wasserthal J, Meyer M, Breit HC, Cyriac J, Yang S, Segeroth M. TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. 2022;(arXiv:2208.05868).

  12. Castillo R, Castillo E, Fuentes D, Ahmad M, Wood AM, Ludwig MS et al. A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive. Phys Med Biol. 2013;58(9):2861–2877.

    Google Scholar 

  13. Rühaak J, Polzin T, Heldmann S, Simpson IJA, Handels H, Modersitzki J et al. Estimation of large motion in lung CT by integrating regularized keypoint correspondences into dense deformable registration. IEEE Trans Med Imaging. 2017;36(8):1746–1757.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kaftan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaftan, P., Heinrich, M.P., Hansen, L., Rasche, V., Kestler, H.A., Bigalke, A. (2024). Abstracting Volumetric Medical Images with Sparse Keypoints for Efficient Geometric Segmentation of Lung Fissures with a Graph CNN. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_19

Download citation

Publish with us

Policies and ethics