Skip to main content

Self-supervised Vessel Segmentation from X-ray Images using Digitally Reconstructed Radiographs

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 322 Accesses

Abstract

Coronary artery segmentation on angiograms can be beneficial in the diagnosis and treatment of coronary artery diseases. In this paper, we propose a self-supervised vessel segmentation framework that incorporates the knowledge from generated digitally reconstructed radiographs(DRRs) to perform vessel segmentation on angiographic images without manual annotations. The framework is built based on domain randomization, adversarial learning, and self-supervised learning. Domain randomization and adversarial learning are able to effectively reduce the domain gaps between DRRs and angiograms, whereas self-supervised learning enables the network to learn photometric invariant and geometric equivariant features for angiographic images. The experimental results demonstrate that we achieve a better performance compared with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iyer K, Najarian CP, Fattah AA, Arthurs CJ, Soroushmehr SR, Subban V et al. Angionet: a convolutional neural network for vessel segmentation in X-ray angiography. Sci Rep. 2021;11(1):18066.

    Google Scholar 

  2. Ma Y, Hua Y, Deng H, Song T, Wang H, Xue Z et al. Self-supervised vessel segmentation via adversarial learning. Proc IEEE. 2021:7536–45.

    Google Scholar 

  3. Kim B, Oh Y, Ye JC. Diffusion adversarial representation learning for self-supervised vessel segmentation. The Eleventh International Conference on Learning Representations. 2023.

    Google Scholar 

  4. Shi T, Ding X, Zhang L, Yang X. FreeCOS: self-supervised learning from fractals and unlabeled images for curvilinear object segmentation. Proc IEEE. 2023:876–86.

    Google Scholar 

  5. Zhang B, Faghihroohi S, Azampour MF, Liu S, Ghotbi R, Schunkert H et al. A patientspecific self-supervised model for automatic X-ray/CT registration. Med Image Comput Comput Assist Interv. Springer. 2023:515–24.

    Google Scholar 

  6. Gharleghi R, Adikari D, Ellenberger K, Ooi SY, Ellis C, Chen CM et al. Automated segmentation of normal and diseased coronary arteries: the ASOCA challenge. Comput Med Imaging Graph. 2022;97:102049.

    Google Scholar 

  7. Gharleghi R, Adikari D, Ellenberger K,Webster M, Ellis C, Sowmya A et al. Annotated computed tomography coronary angiogram images and associated data of normal and diseased arteries. Sci Data. 2023;10(1):128.

    Google Scholar 

  8. Yang Y, Soatto S. Fda: fourier domain adaptation for semantic segmentation. Proc IEEE. 2020:4085–95.

    Google Scholar 

  9. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Med Image Comput Comput Assist Interv. Springer. 2015:234–41.

    Google Scholar 

  10. Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks for volumetric medical image segmentation. Proc Int Conf 3D Vis. Ieee. 2016:565–71.

    Google Scholar 

  11. Shit S, Paetzold JC, Sekuboyina A, Ezhov I,Unger A, ZhylkaAet al. clDice-a novel topologypreserving loss function for tubular structure segmentation. Proc IEEE. 2021:16560–9.

    Google Scholar 

  12. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proc IEEE. 2017:1125–34.

    Google Scholar 

  13. Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S. Least squares generative adversarial networks. Proc IEEE. 2017:2794–802.

    Google Scholar 

  14. Melas-Kyriazi L, Manrai AK. Pixmatch: unsupervised domain adaptation via pixelwise consistency training. Proc IEEE. 2021:12435–45.

    Google Scholar 

  15. Kingma D. Adam: a method for stochastic optimization. Int Conf Learn Represent. 2014.

    Google Scholar 

  16. Zuiderveld K. Contrast limited adaptive histogram equalization. Graph Gems. 1994:474–85.

    Google Scholar 

  17. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T et al. Adaptive histogram equalization and its variations. Comp Vis Graph Image Proc. 1987;39(3):355–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z. et al. (2024). Self-supervised Vessel Segmentation from X-ray Images using Digitally Reconstructed Radiographs. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_64

Download citation

Publish with us

Policies and ethics